Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 4.11

Min(phi) over symmetries of the knot is: [-1,0,0,1,0,0,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['4.11', '6.1244', '6.2058', '7.45752']
Arrow polynomial of the knot is: -4*K1**2 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.5', '4.7', '4.10', '4.11', '6.142', '6.563', '6.606', '6.788', '6.892', '6.944', '6.949', '6.971', '6.1011', '6.1060', '6.1124', '6.1212', '6.1238', '6.1241', '6.1274', '6.1291', '6.1304', '6.1309', '6.1312', '6.1373', '6.1390', '6.1392', '6.1393', '6.1394', '6.1403', '6.1407', '6.1412', '6.1413', '6.1423', '6.1424', '6.1425', '6.1426', '6.1438', '6.1440', '6.1448', '6.1449', '6.1452', '6.1453', '6.1456', '6.1457', '6.1478', '6.1479', '6.1520', '6.1554', '6.1559', '6.1588', '6.1589', '6.1609', '6.1610', '6.1619', '6.1621', '6.1626', '6.1630', '6.1632', '6.1633', '6.1643', '6.1657', '6.1689', '6.1721', '6.1723', '6.1737', '6.1764', '6.1777', '6.1783', '6.1808', '6.1816', '6.1853', '6.1855', '6.1856', '6.1860', '6.1864', '6.1871', '6.1872', '6.1875', '6.1882', '6.1891', '6.1894', '6.1895', '6.1896', '6.1897', '6.1898', '6.1900', '6.1902', '6.1903', '6.1938', '6.1940', '6.1942', '6.1946', '6.1947', '6.1952', '6.1956', '6.1957', '6.1959', '6.1965', '6.1968', '6.1969', '6.1970', '6.1972', '6.1973', '6.1974', '6.2000', '6.2006', '6.2012', '6.2032', '6.2033', '6.2035', '6.2036', '6.2037', '6.2038', '6.2040', '6.2041', '6.2042', '6.2044', '6.2045', '6.2047', '6.2048', '6.2049', '6.2052', '6.2053', '6.2054', '6.2055', '6.2058', '6.2060', '6.2061', '6.2062', '6.2067', '6.2069', '6.2072', '6.2073', '6.2076', '6.2077', '6.2080']
Outer characteristic polynomial of the knot is: t^5+5t^3+2t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['4.11', '6.1244', '6.2058', '7.45752']
2-strand cable arrow polynomial of the knot is: -192*K1**4 - 224*K1**2*K2**2 + 480*K1**2*K2 - 208*K1**2 + 176*K1*K2*K3 - 48*K2**4 + 32*K2**2*K4 - 152*K2**2 - 32*K3**2 - 4*K4**2 + 170
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['4.11']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk4.13', 'vk4.18', 'vk4.31', 'vk4.51', 'vk4.60', 'vk4.69', 'vk6.3543', 'vk6.3546', 'vk6.3691', 'vk6.3694', 'vk6.3723', 'vk6.3726', 'vk6.3787', 'vk6.3790', 'vk6.3883', 'vk6.3886', 'vk6.3915', 'vk6.3918', 'vk6.3979', 'vk6.3982', 'vk6.4906', 'vk6.4931', 'vk6.4934', 'vk6.4979', 'vk6.4982', 'vk6.5018', 'vk6.5259', 'vk6.5262', 'vk6.5744', 'vk6.5750', 'vk6.5775', 'vk6.5781', 'vk6.6056', 'vk6.6059', 'vk6.6062', 'vk6.6091', 'vk6.6094', 'vk6.6120', 'vk6.6126', 'vk6.6155', 'vk6.6158', 'vk6.6184', 'vk6.6190', 'vk6.6216', 'vk6.6219', 'vk6.6222', 'vk6.6296', 'vk6.6302', 'vk6.6456', 'vk6.6462', 'vk6.6515', 'vk6.6518', 'vk6.6567', 'vk6.6607', 'vk6.6613', 'vk6.6655', 'vk6.6661', 'vk6.6679', 'vk6.6735', 'vk6.6741', 'vk6.6875', 'vk6.6881', 'vk6.6919', 'vk6.6922', 'vk6.6951', 'vk6.6954', 'vk6.7079', 'vk6.7082', 'vk6.7111', 'vk6.7114', 'vk6.7171', 'vk6.7174', 'vk6.7255', 'vk6.7258', 'vk6.7287', 'vk6.7290', 'vk6.7347', 'vk6.7350', 'vk6.7811', 'vk6.7817', 'vk6.7842', 'vk6.7848', 'vk6.8093', 'vk6.8131', 'vk6.8137', 'vk6.8179', 'vk6.8185', 'vk6.8205', 'vk6.8259', 'vk6.8265', 'vk6.8419', 'vk6.8425', 'vk6.8469', 'vk6.8472', 'vk6.8475', 'vk6.8501', 'vk6.8504', 'vk6.8533', 'vk6.8539', 'vk6.8565', 'vk6.8568', 'vk6.8597', 'vk6.8603', 'vk6.8628', 'vk6.8631', 'vk6.8634', 'vk6.8708', 'vk6.8714', 'vk6.8838', 'vk6.8844', 'vk6.8888', 'vk6.8891', 'vk6.9466', 'vk6.9490', 'vk6.9493', 'vk6.9538', 'vk6.9541', 'vk6.9578', 'vk6.9804', 'vk6.9807', 'vk6.11382', 'vk6.11397', 'vk6.11660', 'vk6.11679', 'vk6.12013', 'vk6.12030', 'vk6.12569', 'vk6.12578', 'vk6.12680', 'vk6.12691', 'vk6.13002', 'vk6.13025', 'vk6.13278', 'vk6.13281', 'vk6.13310', 'vk6.13313', 'vk6.13438', 'vk6.13441', 'vk6.13470', 'vk6.13473', 'vk6.13534', 'vk6.13537', 'vk6.13628', 'vk6.13631', 'vk6.13660', 'vk6.13663', 'vk6.13724', 'vk6.13727', 'vk6.13912', 'vk6.14007', 'vk6.14181', 'vk6.14284', 'vk6.14287', 'vk6.14316', 'vk6.14319', 'vk6.14380', 'vk6.14383', 'vk6.14420', 'vk6.14444', 'vk6.14447', 'vk6.14759', 'vk6.14768', 'vk6.14796', 'vk6.14799', 'vk6.15367', 'vk6.15368', 'vk6.15491', 'vk6.15493', 'vk6.15514', 'vk6.15517', 'vk6.15546', 'vk6.15549', 'vk6.15610', 'vk6.15613', 'vk6.15653', 'vk6.15672', 'vk6.15913', 'vk6.15928', 'vk6.15953', 'vk6.15956', 'vk6.16107', 'vk6.16727', 'vk6.16886', 'vk6.17400', 'vk6.17530', 'vk6.17585', 'vk6.18031', 'vk6.18040', 'vk6.18773', 'vk6.18780', 'vk6.18860', 'vk6.19296', 'vk6.19449', 'vk6.19452', 'vk6.19591', 'vk6.19744', 'vk6.19745', 'vk6.19793', 'vk6.19810', 'vk6.19841', 'vk6.19850', 'vk6.20753', 'vk6.20764', 'vk6.20801', 'vk6.20804', 'vk6.20931', 'vk6.21038', 'vk6.21039', 'vk6.21481', 'vk6.21498', 'vk6.21532', 'vk6.21535', 'vk6.21566', 'vk6.21742', 'vk6.21745', 'vk6.21850', 'vk6.21853', 'vk6.22198', 'vk6.22199', 'vk6.22342', 'vk6.22461', 'vk6.22462', 'vk6.22873', 'vk6.22879', 'vk6.22904', 'vk6.22910', 'vk6.23064', 'vk6.23134', 'vk6.23183', 'vk6.23189', 'vk6.23271', 'vk6.23287', 'vk6.23319', 'vk6.23323', 'vk6.23380', 'vk6.23427', 'vk6.23431', 'vk6.23519', 'vk6.23566', 'vk6.23586', 'vk6.23612', 'vk6.23617', 'vk6.23682', 'vk6.23688', 'vk6.23728', 'vk6.23733', 'vk6.23852', 'vk6.23905', 'vk6.24469', 'vk6.24484', 'vk6.24893', 'vk6.24908', 'vk6.25356', 'vk6.25369', 'vk6.25490', 'vk6.25804', 'vk6.25810', 'vk6.25915', 'vk6.25921', 'vk6.26009', 'vk6.26226', 'vk6.26249', 'vk6.26282', 'vk6.26293', 'vk6.26395', 'vk6.26484', 'vk6.26623', 'vk6.26626', 'vk6.26671', 'vk6.26692', 'vk6.26727', 'vk6.26736', 'vk6.27370', 'vk6.27373', 'vk6.27376', 'vk6.27400', 'vk6.27424', 'vk6.27428', 'vk6.27448', 'vk6.27451', 'vk6.27472', 'vk6.27498', 'vk6.27501', 'vk6.27504', 'vk6.27560', 'vk6.27674', 'vk6.27680', 'vk6.27730', 'vk6.27733', 'vk6.27894', 'vk6.27897', 'vk6.28217', 'vk6.28223', 'vk6.28414', 'vk6.28479', 'vk6.28486', 'vk6.29010', 'vk6.29035', 'vk6.29039', 'vk6.29069', 'vk6.29092', 'vk6.29124', 'vk6.29220', 'vk6.29226', 'vk6.29642', 'vk6.29648', 'vk6.29718', 'vk6.29731', 'vk6.29760', 'vk6.29765', 'vk6.30982', 'vk6.31003', 'vk6.31109', 'vk6.31132', 'vk6.31186', 'vk6.32166', 'vk6.32183', 'vk6.32354', 'vk6.32653', 'vk6.32668', 'vk6.32996', 'vk6.33009', 'vk6.33035', 'vk6.33038', 'vk6.33163', 'vk6.33166', 'vk6.33195', 'vk6.33198', 'vk6.33226', 'vk6.33229', 'vk6.33378', 'vk6.33390', 'vk6.33428', 'vk6.33440', 'vk6.33485', 'vk6.33497', 'vk6.33594', 'vk6.33605', 'vk6.33731', 'vk6.33806', 'vk6.34096', 'vk6.34099', 'vk6.34120', 'vk6.34458', 'vk6.34534', 'vk6.34542', 'vk6.34561', 'vk6.34573', 'vk6.34797', 'vk6.34819', 'vk6.34831', 'vk6.34852', 'vk6.34858', 'vk6.34883', 'vk6.34889', 'vk6.35057', 'vk6.35172', 'vk6.35178', 'vk6.35199', 'vk6.35205', 'vk6.35291', 'vk6.35297', 'vk6.35303', 'vk6.35355', 'vk6.35361', 'vk6.35416', 'vk6.35436', 'vk6.35464', 'vk6.35499', 'vk6.35505', 'vk6.35610', 'vk6.35622', 'vk6.35674', 'vk6.35680', 'vk6.35686', 'vk6.35729', 'vk6.35735', 'vk6.35741', 'vk6.35777', 'vk6.35783', 'vk6.35838', 'vk6.35844', 'vk6.35870', 'vk6.35876', 'vk6.35894', 'vk6.35906', 'vk6.35946', 'vk6.35952', 'vk6.36066', 'vk6.36101', 'vk6.36107', 'vk6.36113', 'vk6.36154', 'vk6.36166', 'vk6.36175', 'vk6.36182', 'vk6.36191', 'vk6.36317', 'vk6.36390', 'vk6.36438', 'vk6.36450', 'vk6.36532', 'vk6.36544', 'vk6.36609', 'vk6.36621', 'vk6.37583', 'vk6.37754', 'vk6.37766', 'vk6.37818', 'vk6.37830', 'vk6.37875', 'vk6.37887', 'vk6.37912', 'vk6.37918', 'vk6.37992', 'vk6.37998', 'vk6.38049', 'vk6.38055', 'vk6.38801', 'vk6.38837', 'vk6.38843', 'vk6.38885', 'vk6.38891', 'vk6.38913', 'vk6.38959', 'vk6.38965', 'vk6.38971', 'vk6.39069', 'vk6.39112', 'vk6.39118', 'vk6.39521', 'vk6.39533', 'vk6.39675', 'vk6.39681', 'vk6.39785', 'vk6.39804', 'vk6.39849', 'vk6.39860', 'vk6.39909', 'vk6.39921', 'vk6.39973', 'vk6.39985', 'vk6.40037', 'vk6.40049', 'vk6.40069', 'vk6.40081', 'vk6.40088', 'vk6.40164', 'vk6.40176', 'vk6.40259', 'vk6.40270', 'vk6.40319', 'vk6.40325', 'vk6.40331', 'vk6.40972', 'vk6.40975', 'vk6.40978', 'vk6.41003', 'vk6.41006', 'vk6.41031', 'vk6.41035', 'vk6.41060', 'vk6.41063', 'vk6.41087', 'vk6.41093', 'vk6.41118', 'vk6.41121', 'vk6.41124', 'vk6.41206', 'vk6.41212', 'vk6.41218', 'vk6.41368', 'vk6.41374', 'vk6.41403', 'vk6.41406', 'vk6.41746', 'vk6.41758', 'vk6.41916', 'vk6.41922', 'vk6.42046', 'vk6.42090', 'vk6.42102', 'vk6.42121', 'vk6.42130', 'vk6.42134', 'vk6.42264', 'vk6.42268', 'vk6.42417', 'vk6.42429', 'vk6.42513', 'vk6.42622', 'vk6.42736', 'vk6.42774', 'vk6.42785', 'vk6.42810', 'vk6.42900', 'vk6.42993', 'vk6.43033', 'vk6.43069', 'vk6.43081', 'vk6.43092', 'vk6.43199', 'vk6.43303', 'vk6.43339', 'vk6.43373', 'vk6.43385', 'vk6.43390', 'vk6.43399', 'vk6.43409', 'vk6.43540', 'vk6.43552', 'vk6.43638', 'vk6.43650', 'vk6.43745', 'vk6.43757', 'vk6.43903', 'vk6.43908', 'vk6.44590', 'vk6.44679', 'vk6.44708', 'vk6.44731', 'vk6.44899', 'vk6.44908', 'vk6.44955', 'vk6.44970', 'vk6.45019', 'vk6.45026', 'vk6.45555', 'vk6.45576', 'vk6.45579', 'vk6.45624', 'vk6.45627', 'vk6.45667', 'vk6.45738', 'vk6.45825', 'vk6.45902', 'vk6.45905', 'vk6.46128', 'vk6.46140', 'vk6.46345', 'vk6.46368', 'vk6.46407', 'vk6.46418', 'vk6.46461', 'vk6.46509', 'vk6.46521', 'vk6.46565', 'vk6.46577', 'vk6.46597', 'vk6.46606', 'vk6.46614', 'vk6.46669', 'vk6.46681', 'vk6.46789', 'vk6.46923', 'vk6.46926', 'vk6.47433', 'vk6.47772', 'vk6.47784', 'vk6.47922', 'vk6.47943', 'vk6.48046', 'vk6.48331', 'vk6.48334', 'vk6.48415', 'vk6.48418', 'vk6.48862', 'vk6.48891', 'vk6.48894', 'vk6.48939', 'vk6.48942', 'vk6.49147', 'vk6.49150', 'vk6.49406', 'vk6.49409', 'vk6.49412', 'vk6.49441', 'vk6.49444', 'vk6.49470', 'vk6.49476', 'vk6.49505', 'vk6.49508', 'vk6.49534', 'vk6.49540', 'vk6.49614', 'vk6.49620', 'vk6.49645', 'vk6.49689', 'vk6.49695', 'vk6.49737', 'vk6.49743', 'vk6.49757', 'vk6.49817', 'vk6.49823', 'vk6.49942', 'vk6.49944', 'vk6.50049', 'vk6.50052', 'vk6.50101', 'vk6.50104', 'vk6.50133', 'vk6.50136', 'vk6.50504', 'vk6.50510', 'vk6.50686', 'vk6.50728', 'vk6.50734', 'vk6.50758', 'vk6.50816', 'vk6.50822', 'vk6.50863', 'vk6.50866', 'vk6.50869', 'vk6.50895', 'vk6.50898', 'vk6.50927', 'vk6.50933', 'vk6.50951', 'vk6.50954', 'vk6.51031', 'vk6.51037', 'vk6.51156', 'vk6.51184', 'vk6.51187', 'vk6.51224', 'vk6.51227', 'vk6.52441', 'vk6.53331', 'vk6.53578', 'vk6.53581', 'vk6.53610', 'vk6.53613', 'vk6.53666', 'vk6.53668', 'vk6.53739', 'vk6.53750', 'vk6.54278', 'vk6.54280', 'vk6.54290', 'vk6.54293', 'vk6.54506', 'vk6.54508', 'vk6.54558', 'vk6.54567', 'vk6.54676', 'vk6.54698', 'vk6.54710', 'vk6.54785', 'vk6.54946', 'vk6.55046', 'vk6.55154', 'vk6.55226', 'vk6.55270', 'vk6.55289', 'vk6.55399', 'vk6.55476', 'vk6.55516', 'vk6.55548', 'vk6.55560', 'vk6.55676', 'vk6.55688', 'vk6.55718', 'vk6.55730', 'vk6.55775', 'vk6.55787', 'vk6.57127', 'vk6.57507', 'vk6.57519', 'vk6.57673', 'vk6.57685', 'vk6.57741', 'vk6.58134', 'vk6.58148', 'vk6.58151', 'vk6.58194', 'vk6.58197', 'vk6.58238', 'vk6.58319', 'vk6.58407', 'vk6.58471', 'vk6.58474', 'vk6.58697', 'vk6.58709', 'vk6.58814', 'vk6.58825', 'vk6.58871', 'vk6.58903', 'vk6.58915', 'vk6.58934', 'vk6.59016', 'vk6.59020', 'vk6.59434', 'vk6.59440', 'vk6.59446', 'vk6.59484', 'vk6.59488', 'vk6.59532', 'vk6.59544', 'vk6.59591', 'vk6.59597', 'vk6.59626', 'vk6.59687', 'vk6.59693', 'vk6.59699', 'vk6.59721', 'vk6.59727', 'vk6.59733', 'vk6.59772', 'vk6.59778', 'vk6.59832', 'vk6.59860', 'vk6.59866', 'vk6.59875', 'vk6.59913', 'vk6.59918', 'vk6.59969', 'vk6.59981', 'vk6.60024', 'vk6.60030', 'vk6.60036', 'vk6.60230', 'vk6.60242', 'vk6.60290', 'vk6.60302', 'vk6.60373', 'vk6.60385', 'vk6.60745', 'vk6.60746', 'vk6.61525', 'vk6.61528', 'vk6.61531', 'vk6.61548', 'vk6.61572', 'vk6.61576', 'vk6.61590', 'vk6.61593', 'vk6.61608', 'vk6.61632', 'vk6.61635', 'vk6.61638', 'vk6.61717', 'vk6.61723', 'vk6.61729', 'vk6.61841', 'vk6.61847', 'vk6.61897', 'vk6.61900', 'vk6.62199', 'vk6.62211', 'vk6.62295', 'vk6.62301', 'vk6.62716', 'vk6.62744', 'vk6.62750', 'vk6.62784', 'vk6.62790', 'vk6.62817', 'vk6.62859', 'vk6.62865', 'vk6.62871', 'vk6.62931', 'vk6.62978', 'vk6.62984', 'vk6.63147', 'vk6.63159', 'vk6.63228', 'vk6.63234', 'vk6.64895', 'vk6.64930', 'vk6.64935', 'vk6.65002', 'vk6.65007', 'vk6.65081', 'vk6.65108', 'vk6.65137', 'vk6.65141', 'vk6.65207', 'vk6.65211', 'vk6.65268', 'vk6.66085', 'vk6.66251', 'vk6.66253', 'vk6.66653', 'vk6.66674', 'vk6.66678', 'vk6.66704', 'vk6.66718', 'vk6.66746', 'vk6.66840', 'vk6.66846', 'vk6.67087', 'vk6.67093', 'vk6.67473', 'vk6.67478', 'vk6.67500', 'vk6.67513', 'vk6.67517', 'vk6.67536', 'vk6.67539', 'vk6.67563', 'vk6.67576', 'vk6.67579', 'vk6.67582', 'vk6.67630', 'vk6.67710', 'vk6.67716', 'vk6.67745', 'vk6.67748', 'vk6.67951', 'vk6.67957', 'vk6.69314', 'vk6.69339', 'vk6.69342', 'vk6.69367', 'vk6.69498', 'vk6.69501', 'vk6.71357', 'vk6.71876', 'vk6.72761', 'vk6.72764', 'vk6.72780', 'vk6.72783', 'vk6.73077', 'vk6.73080', 'vk6.73094', 'vk6.73097', 'vk6.73942', 'vk6.73956', 'vk6.74336', 'vk6.74803', 'vk6.74827', 'vk6.75619', 'vk6.75625', 'vk6.75651', 'vk6.75716', 'vk6.75722', 'vk6.75750', 'vk6.75770', 'vk6.75781', 'vk6.75787', 'vk6.75809', 'vk6.75815', 'vk6.75857', 'vk6.75923', 'vk6.75925', 'vk6.76353', 'vk6.76356', 'vk6.76386', 'vk6.76552', 'vk6.77007', 'vk6.77916', 'vk6.77919', 'vk6.77935', 'vk6.77994', 'vk6.78600', 'vk6.78606', 'vk6.78666', 'vk6.78725', 'vk6.78731', 'vk6.78771', 'vk6.78777', 'vk6.78800', 'vk6.78805', 'vk6.78857', 'vk6.78929', 'vk6.78931', 'vk6.79379', 'vk6.79697', 'vk6.79721', 'vk6.80702', 'vk6.80705', 'vk6.80732', 'vk6.82475', 'vk6.82487', 'vk6.82865', 'vk6.82869', 'vk6.82996', 'vk6.83000', 'vk6.83121', 'vk6.83127', 'vk6.83151', 'vk6.83156', 'vk6.83191', 'vk6.83220', 'vk6.83383', 'vk6.83385', 'vk6.83552', 'vk6.83558', 'vk6.83936', 'vk6.83938', 'vk6.84082', 'vk6.84094', 'vk6.84161', 'vk6.84217', 'vk6.84241', 'vk6.84422', 'vk6.84506', 'vk6.84682', 'vk6.84999', 'vk6.85666', 'vk6.85669', 'vk6.85840', 'vk6.85897', 'vk6.85903', 'vk6.85961', 'vk6.85967', 'vk6.86001', 'vk6.86023', 'vk6.86176', 'vk6.86186', 'vk6.86408', 'vk6.86420', 'vk6.86433', 'vk6.86444', 'vk6.86450', 'vk6.86546', 'vk6.86558', 'vk6.87087', 'vk6.87290', 'vk6.87292', 'vk6.87552', 'vk6.87555', 'vk6.87740', 'vk6.87746', 'vk6.87796', 'vk6.88048', 'vk6.88135', 'vk6.88209', 'vk6.88221', 'vk6.88273', 'vk6.88285', 'vk6.88410', 'vk6.88428', 'vk6.88817', 'vk6.88834', 'vk6.89043', 'vk6.89055', 'vk6.89333', 'vk6.89605', 'vk6.89649', 'vk6.89713', 'vk6.89754', 'vk6.89759', 'vk6.90068']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is r.
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1U3O4O3U2U4
R3 orbit {'O1O2U1U3O4O3U2U4'}
R3 orbit length 1
Gauss code of -K Same
Gauss code of K* O1O2U3U1O3O4U2U4
Gauss code of -K* O1O2U3U1O3O4U2U4
Diagrammatic symmetry type r
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 1 0],[ 1 0 1 1 1],[ 0 -1 0 0 0],[-1 -1 0 0 0],[ 0 -1 0 0 0]]
Primitive based matrix [[ 0 1 0 0 -1],[-1 0 0 0 -1],[ 0 0 0 0 -1],[ 0 0 0 0 -1],[ 1 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,0,0,1,0,0,1,0,1,1]
Phi over symmetry [-1,0,0,1,0,0,1,0,1,1]
Phi of -K [-1,0,0,1,0,0,1,0,1,1]
Phi of K* [-1,0,0,1,1,1,1,0,0,0]
Phi of -K* [-1,0,0,1,1,1,1,0,0,0]
Symmetry type of based matrix r
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z+11
Enhanced Jones-Krushkal polynomial 5w^2z+11w
Inner characteristic polynomial t^4+3t^2
Outer characteristic polynomial t^5+5t^3+2t
Flat arrow polynomial -4*K1**2 + 2*K2 + 3
2-strand cable arrow polynomial -192*K1**4 - 224*K1**2*K2**2 + 480*K1**2*K2 - 208*K1**2 + 176*K1*K2*K3 - 48*K2**4 + 32*K2**2*K4 - 152*K2**2 - 32*K3**2 - 4*K4**2 + 170
Genus of based matrix 1
Fillings of based matrix [[{1, 4}, {2, 3}], [{2, 4}, {1, 3}], [{3, 4}, {1, 2}], [{4}, {1, 3}, {2}]]
If K is slice False
Contact