Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 4.4

Min(phi) over symmetries of the knot is: [-2,-2,2,2,0,1,2,2,3,0]
Flat knots (up to 7 crossings) with same phi are :['4.4']
Arrow polynomial of the knot is: 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.4', '4.9', '5.13', '5.63', '5.95', '5.109', '5.112', '5.113', '5.114', '5.120', '6.57', '6.60', '6.68', '6.109', '6.127', '6.131', '6.138', '6.230', '6.299', '6.305', '6.307', '6.344', '6.396', '6.403', '6.454', '6.549', '6.585', '6.587', '6.605', '6.664', '6.761', '6.830', '6.884', '6.889', '6.916', '6.939', '6.963', '6.1009', '6.1103', '6.1104', '6.1113', '6.1118', '6.1119', '6.1127', '6.1187', '6.1194', '6.1204', '6.1265', '6.1266', '6.1272', '6.1328', '6.1329', '6.1352', '6.1361', '6.1381', '6.1397', '6.1398', '6.1406', '6.1408', '6.1414', '6.1461', '6.1463', '6.1467', '6.1480', '6.1486', '6.1584', '6.1636', '6.1659', '6.1742', '6.1750', '6.1769', '6.1782', '6.1785', '6.1795', '6.1804', '6.1829', '6.1842', '6.1843', '6.1879', '6.1880', '6.1892', '6.1893', '6.1913', '6.1939', '6.1953', '6.1976', '6.1977', '6.1978', '6.1979', '6.1980', '6.1981', '6.1982', '6.1983', '6.1984', '6.1985', '6.1986', '6.1987', '6.1988', '6.1989', '6.1990', '6.1991', '6.1992', '6.1993', '6.2023', '6.2024', '6.2025', '6.2026', '6.2027', '6.2028', '6.2029', '6.2030', '6.2031', '6.2056', '6.2059', '6.2085', '6.2086', '7.326', '7.340', '7.354', '7.366', '7.678', '7.687', '7.768', '7.838', '7.854', '7.930', '7.932', '7.1701', '7.1707', '7.1772', '7.2226', '7.2254', '7.2270', '7.2285', '7.2290', '7.2577', '7.2946', '7.2978', '7.2985', '7.3315', '7.3364', '7.3367', '7.3715', '7.4208', '7.4686', '7.5440', '7.5799', '7.5806', '7.5810', '7.5812', '7.5952', '7.6185', '7.8483', '7.8707', '7.9668', '7.9689', '7.9696', '7.9710', '7.9927', '7.9942', '7.10099', '7.10101', '7.10210', '7.10237', '7.10363', '7.10388', '7.10390', '7.10421', '7.10638', '7.10644', '7.10760', '7.11715', '7.11718', '7.12303', '7.12743', '7.12856', '7.12975', '7.13427', '7.13436', '7.13442', '7.13474', '7.13608', '7.13705', '7.13890', '7.14274', '7.14884', '7.15092', '7.15108', '7.15130', '7.15583', '7.15630', '7.15640', '7.15648', '7.15661', '7.15706', '7.15958', '7.16007', '7.16074', '7.16112', '7.16121', '7.16146', '7.16167', '7.16188', '7.16210', '7.17168', '7.17282', '7.17442', '7.17500', '7.17727', '7.17853', '7.17859', '7.17861', '7.17863', '7.17927', '7.17992', '7.17999', '7.18003', '7.18005', '7.18014', '7.18058', '7.18060', '7.18137', '7.18596', '7.18605', '7.18606', '7.18609', '7.18682', '7.18684', '7.18961', '7.18963', '7.19132', '7.19135', '7.19142', '7.19144', '7.19202', '7.19272', '7.19379', '7.19381', '7.19413', '7.19471', '7.19686', '7.19769', '7.19778', '7.20365', '7.20425', '7.20427', '7.20657', '7.21741', '7.21785', '7.23092', '7.23116', '7.23364', '7.23454', '7.23508', '7.23642', '7.23661', '7.23731', '7.24147', '7.24285', '7.24443', '7.24766', '7.24794', '7.24851', '7.24855', '7.25030', '7.25336', '7.25526', '7.25624', '7.25754', '7.25757', '7.25874', '7.25877', '7.25901', '7.25940', '7.25942', '7.25962', '7.26054', '7.26114', '7.26117', '7.26368', '7.26438', '7.26446', '7.26669', '7.26812', '7.26832', '7.26946', '7.26960', '7.26987', '7.26991', '7.27033', '7.27052', '7.27159', '7.27162', '7.27306', '7.27349', '7.27500', '7.27832', '7.28162', '7.28165', '7.28169', '7.28172', '7.28187', '7.28196', '7.28314', '7.28652', '7.28703', '7.29090', '7.29093', '7.29101', '7.29110', '7.29120', '7.29123', '7.29177', '7.29248', '7.29472', '7.29494', '7.29858', '7.29914', '7.30099', '7.30135', '7.30165', '7.30195', '7.30410', '7.30511', '7.30939', '7.31247', '7.31452', '7.31465', '7.31487', '7.31666', '7.31722', '7.31727', '7.31731', '7.32196', '7.32199', '7.32204', '7.32673', '7.32678', '7.32689', '7.32759', '7.32926', '7.33030', '7.33056', '7.33107', '7.33109', '7.33131', '7.33143', '7.33184', '7.33217', '7.33240', '7.33300', '7.33432', '7.33483', '7.33511', '7.33515', '7.33521', '7.33529', '7.33534', '7.33979', '7.34055', '7.34195', '7.34257', '7.34420', '7.34428', '7.34495', '7.34571', '7.34618', '7.35222', '7.35223', '7.35224', '7.35237', '7.35246', '7.35250', '7.35261', '7.35270', '7.35278', '7.35280', '7.35282', '7.35287', '7.35289', '7.35291', '7.35295', '7.35299', '7.35314', '7.35316', '7.35329', '7.35333', '7.35462', '7.35464', '7.35475', '7.35478', '7.35485', '7.35487', '7.35534', '7.35580', '7.35638', '7.35649', '7.35651', '7.35652', '7.35653', '7.35659', '7.35668', '7.35669', '7.35673', '7.35678', '7.35679', '7.35714', '7.35717', '7.35723', '7.35737', '7.35933', '7.36183', '7.36228', '7.36248', '7.36251', '7.36252', '7.36435', '7.36459', '7.36488', '7.36492', '7.36537', '7.36539', '7.36591', '7.36690', '7.36777', '7.36780', '7.36781', '7.36790', '7.36818', '7.36933', '7.36942', '7.36974', '7.37019', '7.37043', '7.37044', '7.37065', '7.37069', '7.37072', '7.37076', '7.37091', '7.37093', '7.37098', '7.37099', '7.37103', '7.37107', '7.37109', '7.37110', '7.37114', '7.37135', '7.37174', '7.37366', '7.37536', '7.37566', '7.37585', '7.37788', '7.37799', '7.37900', '7.37907', '7.37916', '7.38308', '7.38408', '7.39025', '7.39067', '7.39087', '7.39091', '7.39141', '7.39158', '7.39243', '7.39244', '7.39383', '7.39389', '7.39470', '7.39509', '7.39522', '7.39700', '7.39701', '7.39722', '7.39723', '7.40007', '7.40190', '7.40637', '7.40779', '7.40840', '7.40854', '7.40872', '7.40988', '7.41124', '7.41223', '7.41243', '7.41299', '7.41304', '7.41306', '7.41346', '7.41568', '7.41570', '7.41571', '7.41574', '7.41578', '7.41583', '7.41587', '7.41648', '7.41672', '7.41705', '7.41729', '7.41757', '7.41767', '7.41772', '7.41775', '7.41867', '7.41887', '7.41939', '7.42071', '7.42089', '7.42091', '7.42092', '7.42104', '7.42109', '7.42133', '7.42153', '7.42292', '7.42296', '7.42313', '7.42393', '7.42396', '7.42596', '7.42597', '7.42611', '7.42746', '7.42748', '7.42749', '7.42840', '7.42913', '7.42946', '7.43152', '7.43157', '7.43160', '7.43171', '7.43174', '7.43185', '7.43191', '7.43198', '7.43348', '7.43401', '7.43409', '7.43425', '7.43617', '7.43659', '7.43660', '7.43661', '7.43665', '7.43672', '7.43684', '7.43714', '7.43865', '7.43924', '7.43943', '7.43948', '7.44077', '7.44246', '7.44332', '7.44347', '7.44362', '7.44373', '7.44381', '7.44397', '7.44400', '7.44512', '7.44520', '7.44545', '7.44586', '7.44637', '7.44658', '7.44668', '7.44675', '7.44727', '7.44731', '7.44745', '7.44753', '7.44754', '7.44806', '7.44807', '7.44836', '7.44857', '7.44867', '7.44871', '7.44878', '7.44936', '7.44965', '7.44974', '7.44981', '7.45043', '7.45048', '7.45073', '7.45089', '7.45146', '7.45177', '7.45182', '7.45189', '7.45190', '7.45191', '7.45192', '7.45193', '7.45194', '7.45195', '7.45196', '7.45197', '7.45198', '7.45199', '7.45200', '7.45201', '7.45202', '7.45203', '7.45204', '7.45205', '7.45206', '7.45207', '7.45208', '7.45209', '7.45210', '7.45211', '7.45212', '7.45213', '7.45214', '7.45215', '7.45216', '7.45217', '7.45218', '7.45219', '7.45220', '7.45221', '7.45222', '7.45223', '7.45224', '7.45225', '7.45226', '7.45227', '7.45228', '7.45229', '7.45230', '7.45231', '7.45232', '7.45233', '7.45234', '7.45235', '7.45236', '7.45237', '7.45238', '7.45239', '7.45240', '7.45241', '7.45242', '7.45243', '7.45244', '7.45245', '7.45246', '7.45247', '7.45248', '7.45249', '7.45250', '7.45251', '7.45252', '7.45253', '7.45254', '7.45255', '7.45256', '7.45257', '7.45258', '7.45259', '7.45260', '7.45261', '7.45262', '7.45263', '7.45264', '7.45265', '7.45266', '7.45267', '7.45268', '7.45269', '7.45270', '7.45271', '7.45272', '7.45273', '7.45274', '7.45275', '7.45276', '7.45277', '7.45278', '7.45279', '7.45280', '7.45281', '7.45282', '7.45283', '7.45284', '7.45285', '7.45289', '7.45291', '7.45309', '7.45321', '7.45329', '7.45339', '7.45347', '7.45350', '7.45351', '7.45357', '7.45358', '7.45359', '7.45377', '7.45388', '7.45399', '7.45401', '7.45404', '7.45414', '7.45415', '7.45424', '7.45425', '7.45426', '7.45427', '7.45428', '7.45429', '7.45430', '7.45431', '7.45432', '7.45433', '7.45434', '7.45435', '7.45436', '7.45437', '7.45438', '7.45439', '7.45440', '7.45441', '7.45442', '7.45443', '7.45444', '7.45445', '7.45446', '7.45447', '7.45448', '7.45449', '7.45450', '7.45451', '7.45452', '7.45453', '7.45454', '7.45455', '7.45456', '7.45457', '7.45458', '7.45459', '7.45460', '7.45461', '7.45462', '7.45463', '7.45519', '7.45535', '7.45573', '7.45580', '7.45586', '7.45587', '7.45591', '7.45594', '7.45596', '7.45691', '7.45749', '7.45758', '7.45775', '7.45793', '7.45794', '7.45797', '7.45798', '7.45805', '7.45869', '7.45870', '7.45877', '7.45890', '7.45895', '7.45896', '7.45901', '7.45904', '7.45905', '7.45968', '7.46023', '7.46068', '7.46127', '7.46142', '7.46229', '7.46230', '7.46231', '7.46232', '7.46233']
Outer characteristic polynomial of the knot is: t^5+34t^3+17t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['4.4']
2-strand cable arrow polynomial of the knot is: -128*K2**4 + 128*K2**2*K4 - 32*K4**2 + 30
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['4.4']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk4.85', 'vk4.89', 'vk4.90', 'vk4.98', 'vk4.107', 'vk6.17125', 'vk6.17127', 'vk6.17132', 'vk6.17134', 'vk6.17366', 'vk6.17368', 'vk6.17375', 'vk6.17377', 'vk6.18385', 'vk6.18387', 'vk6.18388', 'vk6.18390', 'vk6.18723', 'vk6.18725', 'vk6.18728', 'vk6.18730', 'vk6.20593', 'vk6.20594', 'vk6.20603', 'vk6.20604', 'vk6.20661', 'vk6.20662', 'vk6.20663', 'vk6.20664', 'vk6.22001', 'vk6.22002', 'vk6.22017', 'vk6.22018', 'vk6.22093', 'vk6.22094', 'vk6.22097', 'vk6.22098', 'vk6.23528', 'vk6.23530', 'vk6.23539', 'vk6.23541', 'vk6.23861', 'vk6.23862', 'vk6.23875', 'vk6.23877', 'vk6.24842', 'vk6.24844', 'vk6.24847', 'vk6.24849', 'vk6.25299', 'vk6.25301', 'vk6.25308', 'vk6.25310', 'vk6.28058', 'vk6.28059', 'vk6.28072', 'vk6.28073', 'vk6.28150', 'vk6.28151', 'vk6.28152', 'vk6.28153', 'vk6.29515', 'vk6.29516', 'vk6.29525', 'vk6.29526', 'vk6.29579', 'vk6.29580', 'vk6.29581', 'vk6.35692', 'vk6.35694', 'vk6.35707', 'vk6.35709', 'vk6.36117', 'vk6.36118', 'vk6.36128', 'vk6.36130', 'vk6.37036', 'vk6.37038', 'vk6.37041', 'vk6.37043', 'vk6.39473', 'vk6.39474', 'vk6.39479', 'vk6.39480', 'vk6.39592', 'vk6.39593', 'vk6.39594', 'vk6.39595', 'vk6.41674', 'vk6.41675', 'vk6.41684', 'vk6.41685', 'vk6.41825', 'vk6.41826', 'vk6.41829', 'vk6.41830', 'vk6.43035', 'vk6.43037', 'vk6.43042', 'vk6.43044', 'vk6.43341', 'vk6.43342', 'vk6.43348', 'vk6.43350', 'vk6.44197', 'vk6.44199', 'vk6.44200', 'vk6.44202', 'vk6.46061', 'vk6.46062', 'vk6.46069', 'vk6.46070', 'vk6.46210', 'vk6.46211', 'vk6.46212', 'vk6.47726', 'vk6.47727', 'vk6.47732', 'vk6.47733', 'vk6.56161', 'vk6.56163', 'vk6.56164', 'vk6.56166', 'vk6.57587', 'vk6.57588', 'vk6.57589', 'vk6.57590', 'vk6.58752', 'vk6.58753', 'vk6.58754', 'vk6.60693', 'vk6.60695', 'vk6.60696', 'vk6.60698', 'vk6.67051', 'vk6.67052', 'vk6.67053', 'vk6.72388', 'vk6.72391', 'vk6.72396', 'vk6.72399', 'vk6.72404', 'vk6.72407', 'vk6.72412', 'vk6.72415', 'vk6.72666', 'vk6.72669', 'vk6.72680', 'vk6.72683', 'vk6.72684', 'vk6.72687', 'vk6.72700', 'vk6.72703', 'vk6.72737', 'vk6.72740', 'vk6.72754', 'vk6.72757', 'vk6.72981', 'vk6.72984', 'vk6.72995', 'vk6.72998', 'vk6.72999', 'vk6.73002', 'vk6.73012', 'vk6.73015', 'vk6.73049', 'vk6.73052', 'vk6.73070', 'vk6.73073', 'vk6.73183', 'vk6.73215', 'vk6.73240', 'vk6.73575', 'vk6.73578', 'vk6.73589', 'vk6.73603', 'vk6.73605', 'vk6.73612', 'vk6.73614', 'vk6.74184', 'vk6.74186', 'vk6.74306', 'vk6.74389', 'vk6.74390', 'vk6.74742', 'vk6.74749', 'vk6.74752', 'vk6.74757', 'vk6.74760', 'vk6.74771', 'vk6.74774', 'vk6.74779', 'vk6.74782', 'vk6.74790', 'vk6.74792', 'vk6.74924', 'vk6.74937', 'vk6.75088', 'vk6.75128', 'vk6.75136', 'vk6.75336', 'vk6.75340', 'vk6.75349', 'vk6.75355', 'vk6.75383', 'vk6.75385', 'vk6.75393', 'vk6.75395', 'vk6.76264', 'vk6.76267', 'vk6.76270', 'vk6.76272', 'vk6.76275', 'vk6.76278', 'vk6.76282', 'vk6.76285', 'vk6.76290', 'vk6.76293', 'vk6.76295', 'vk6.76301', 'vk6.76303', 'vk6.76309', 'vk6.76314', 'vk6.76317', 'vk6.76322', 'vk6.76325', 'vk6.76327', 'vk6.76332', 'vk6.76336', 'vk6.76337', 'vk6.76341', 'vk6.76343', 'vk6.76399', 'vk6.76405', 'vk6.76413', 'vk6.76419', 'vk6.76469', 'vk6.76475', 'vk6.76483', 'vk6.76489', 'vk6.76491', 'vk6.76503', 'vk6.76515', 'vk6.76684', 'vk6.76690', 'vk6.76692', 'vk6.76698', 'vk6.76813', 'vk6.76817', 'vk6.76827', 'vk6.76833', 'vk6.76834', 'vk6.76837', 'vk6.76846', 'vk6.76852', 'vk6.76854', 'vk6.76857', 'vk6.76858', 'vk6.76859', 'vk6.76862', 'vk6.76863', 'vk6.76889', 'vk6.76893', 'vk6.76897', 'vk6.77725', 'vk6.77728', 'vk6.77733', 'vk6.77736', 'vk6.77881', 'vk6.77884', 'vk6.77890', 'vk6.77893', 'vk6.77897', 'vk6.77900', 'vk6.77909', 'vk6.77980', 'vk6.77986', 'vk6.78024', 'vk6.78074', 'vk6.78103', 'vk6.78345', 'vk6.78347', 'vk6.78359', 'vk6.78361', 'vk6.79173', 'vk6.79177', 'vk6.79187', 'vk6.79193', 'vk6.79195', 'vk6.79201', 'vk6.79207', 'vk6.79212', 'vk6.79248', 'vk6.79254', 'vk6.79262', 'vk6.79268', 'vk6.79330', 'vk6.79336', 'vk6.79344', 'vk6.79350', 'vk6.79355', 'vk6.79433', 'vk6.79434', 'vk6.79439', 'vk6.79440', 'vk6.79631', 'vk6.79634', 'vk6.79637', 'vk6.79638', 'vk6.79641', 'vk6.79642', 'vk6.79645', 'vk6.79649', 'vk6.79652', 'vk6.79656', 'vk6.79661', 'vk6.79663', 'vk6.79666', 'vk6.79667', 'vk6.79670', 'vk6.79671', 'vk6.79674', 'vk6.79675', 'vk6.79681', 'vk6.79683', 'vk6.79686', 'vk6.79732', 'vk6.79737', 'vk6.79740', 'vk6.79951', 'vk6.79956', 'vk6.80652', 'vk6.80656', 'vk6.80660', 'vk6.80663', 'vk6.80667', 'vk6.80670', 'vk6.80682', 'vk6.80685', 'vk6.80686', 'vk6.80689', 'vk6.82304', 'vk6.82307', 'vk6.82316', 'vk6.82854', 'vk6.82857', 'vk6.82975', 'vk6.82977', 'vk6.82980', 'vk6.83298', 'vk6.83304', 'vk6.83306', 'vk6.83312', 'vk6.83314', 'vk6.83317', 'vk6.83338', 'vk6.83339', 'vk6.83342', 'vk6.83350', 'vk6.83356', 'vk6.83416', 'vk6.83419', 'vk6.83421', 'vk6.83427', 'vk6.83442', 'vk6.83909', 'vk6.83911', 'vk6.83912', 'vk6.84167', 'vk6.84171', 'vk6.84178', 'vk6.84182', 'vk6.84275', 'vk6.84278', 'vk6.84289', 'vk6.84293', 'vk6.85076', 'vk6.85098', 'vk6.85101', 'vk6.85247', 'vk6.85251', 'vk6.85296', 'vk6.85300', 'vk6.85313', 'vk6.85317', 'vk6.85556', 'vk6.85614', 'vk6.85617', 'vk6.85618', 'vk6.85621', 'vk6.85721', 'vk6.85724', 'vk6.85775', 'vk6.85852', 'vk6.85854', 'vk6.86134', 'vk6.86140', 'vk6.86142', 'vk6.86148', 'vk6.86166', 'vk6.86167', 'vk6.86171', 'vk6.86626', 'vk6.86628', 'vk6.86636', 'vk6.86638', 'vk6.86647', 'vk6.86679', 'vk6.86681', 'vk6.86683', 'vk6.86685', 'vk6.86706', 'vk6.86814', 'vk6.86815', 'vk6.86820', 'vk6.86821', 'vk6.86822', 'vk6.86823', 'vk6.87176', 'vk6.87179', 'vk6.87184', 'vk6.87187', 'vk6.87281', 'vk6.87284', 'vk6.87286', 'vk6.87316', 'vk6.87359', 'vk6.87362', 'vk6.87367', 'vk6.87492', 'vk6.87495', 'vk6.87500', 'vk6.87503', 'vk6.87516', 'vk6.87519', 'vk6.87524', 'vk6.87527', 'vk6.87545', 'vk6.87547', 'vk6.87641', 'vk6.87839', 'vk6.87842', 'vk6.87845', 'vk6.87852', 'vk6.87853', 'vk6.87868', 'vk6.87869', 'vk6.88146', 'vk6.88150', 'vk6.88160', 'vk6.88164', 'vk6.88227', 'vk6.88233', 'vk6.88242', 'vk6.88248', 'vk6.88578', 'vk6.88581', 'vk6.88586', 'vk6.88589', 'vk6.88606', 'vk6.88607', 'vk6.88614', 'vk6.88615', 'vk6.89239', 'vk6.89243', 'vk6.89379', 'vk6.89588', 'vk6.89591', 'vk6.89795', 'vk6.89796', 'vk6.89811', 'vk6.89814', 'vk6.89817', 'vk6.89901', 'vk6.89903', 'vk6.89908', 'vk6.90112', 'vk6.90114', 'vk6.90119', 'vk6.90121', 'vk6.90159', 'vk6.90161', 'vk6.90164', 'vk6.90166', 'vk6.90181', 'vk6.90187', 'vk6.90202', 'vk6.90205', 'vk6.90208', 'vk6.90222', 'vk6.90223', 'vk6.90230', 'vk6.90231']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is a.
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U1U4U3
R3 orbit {'O1O2O3O4U2U1U4U3'}
R3 orbit length 1
Gauss code of -K Same
Gauss code of K* Same
Gauss code of -K* Same
Diagrammatic symmetry type a
Flat genus of the diagram 2
If K is checkerboard colorable True
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 2 2],[ 2 0 0 3 2],[ 2 0 0 2 1],[-2 -3 -2 0 0],[-2 -2 -1 0 0]]
Primitive based matrix [[ 0 2 2 -2 -2],[-2 0 0 -1 -2],[-2 0 0 -2 -3],[ 2 1 2 0 0],[ 2 2 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,2,2,0,1,2,2,3,0]
Phi over symmetry [-2,-2,2,2,0,1,2,2,3,0]
Phi of -K [-2,-2,2,2,0,1,2,2,3,0]
Phi of K* [-2,-2,2,2,0,1,2,2,3,0]
Phi of -K* [-2,-2,2,2,0,1,2,2,3,0]
Symmetry type of based matrix a
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+8z+5
Enhanced Jones-Krushkal polynomial 3w^3z^2+8w^2z+5
Inner characteristic polynomial t^4+18t^2+1
Outer characteristic polynomial t^5+34t^3+17t
Flat arrow polynomial 1
2-strand cable arrow polynomial -128*K2**4 + 128*K2**2*K4 - 32*K4**2 + 30
Genus of based matrix 0
Fillings of based matrix [[{2, 4}, {1, 3}]]
If K is slice True
Contact