Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 4.9

Min(phi) over symmetries of the knot is: [-1,0,0,1,0,0,2,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['4.9', '5.114', '6.2020', '7.44906', '7.45592']
Arrow polynomial of the knot is: 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.4', '4.9', '5.13', '5.63', '5.95', '5.109', '5.112', '5.113', '5.114', '5.120', '6.57', '6.60', '6.68', '6.109', '6.127', '6.131', '6.138', '6.230', '6.299', '6.305', '6.307', '6.344', '6.396', '6.403', '6.454', '6.549', '6.585', '6.587', '6.605', '6.664', '6.761', '6.830', '6.884', '6.889', '6.916', '6.939', '6.963', '6.1009', '6.1103', '6.1104', '6.1113', '6.1118', '6.1119', '6.1127', '6.1187', '6.1194', '6.1204', '6.1265', '6.1266', '6.1272', '6.1328', '6.1329', '6.1352', '6.1361', '6.1381', '6.1397', '6.1398', '6.1406', '6.1408', '6.1414', '6.1461', '6.1463', '6.1467', '6.1480', '6.1486', '6.1584', '6.1636', '6.1659', '6.1742', '6.1750', '6.1769', '6.1782', '6.1785', '6.1795', '6.1804', '6.1829', '6.1842', '6.1843', '6.1879', '6.1880', '6.1892', '6.1893', '6.1913', '6.1939', '6.1953', '6.1976', '6.1977', '6.1978', '6.1979', '6.1980', '6.1981', '6.1982', '6.1983', '6.1984', '6.1985', '6.1986', '6.1987', '6.1988', '6.1989', '6.1990', '6.1991', '6.1992', '6.1993', '6.2023', '6.2024', '6.2025', '6.2026', '6.2027', '6.2028', '6.2029', '6.2030', '6.2031', '6.2056', '6.2059', '6.2085', '6.2086', '7.326', '7.340', '7.354', '7.366', '7.678', '7.687', '7.768', '7.838', '7.854', '7.930', '7.932', '7.1701', '7.1707', '7.1772', '7.2226', '7.2254', '7.2270', '7.2285', '7.2290', '7.2577', '7.2946', '7.2978', '7.2985', '7.3315', '7.3364', '7.3367', '7.3715', '7.4208', '7.4686', '7.5440', '7.5799', '7.5806', '7.5810', '7.5812', '7.5952', '7.6185', '7.8483', '7.8707', '7.9668', '7.9689', '7.9696', '7.9710', '7.9927', '7.9942', '7.10099', '7.10101', '7.10210', '7.10237', '7.10363', '7.10388', '7.10390', '7.10421', '7.10638', '7.10644', '7.10760', '7.11715', '7.11718', '7.12303', '7.12743', '7.12856', '7.12975', '7.13427', '7.13436', '7.13442', '7.13474', '7.13608', '7.13705', '7.13890', '7.14274', '7.14884', '7.15092', '7.15108', '7.15130', '7.15583', '7.15630', '7.15640', '7.15648', '7.15661', '7.15706', '7.15958', '7.16007', '7.16074', '7.16112', '7.16121', '7.16146', '7.16167', '7.16188', '7.16210', '7.17168', '7.17282', '7.17442', '7.17500', '7.17727', '7.17853', '7.17859', '7.17861', '7.17863', '7.17927', '7.17992', '7.17999', '7.18003', '7.18005', '7.18014', '7.18058', '7.18060', '7.18137', '7.18596', '7.18605', '7.18606', '7.18609', '7.18682', '7.18684', '7.18961', '7.18963', '7.19132', '7.19135', '7.19142', '7.19144', '7.19202', '7.19272', '7.19379', '7.19381', '7.19413', '7.19471', '7.19686', '7.19769', '7.19778', '7.20365', '7.20425', '7.20427', '7.20657', '7.21741', '7.21785', '7.23092', '7.23116', '7.23364', '7.23454', '7.23508', '7.23642', '7.23661', '7.23731', '7.24147', '7.24285', '7.24443', '7.24766', '7.24794', '7.24851', '7.24855', '7.25030', '7.25336', '7.25526', '7.25624', '7.25754', '7.25757', '7.25874', '7.25877', '7.25901', '7.25940', '7.25942', '7.25962', '7.26054', '7.26114', '7.26117', '7.26368', '7.26438', '7.26446', '7.26669', '7.26812', '7.26832', '7.26946', '7.26960', '7.26987', '7.26991', '7.27033', '7.27052', '7.27159', '7.27162', '7.27306', '7.27349', '7.27500', '7.27832', '7.28162', '7.28165', '7.28169', '7.28172', '7.28187', '7.28196', '7.28314', '7.28652', '7.28703', '7.29090', '7.29093', '7.29101', '7.29110', '7.29120', '7.29123', '7.29177', '7.29248', '7.29472', '7.29494', '7.29858', '7.29914', '7.30099', '7.30135', '7.30165', '7.30195', '7.30410', '7.30511', '7.30939', '7.31247', '7.31452', '7.31465', '7.31487', '7.31666', '7.31722', '7.31727', '7.31731', '7.32196', '7.32199', '7.32204', '7.32673', '7.32678', '7.32689', '7.32759', '7.32926', '7.33030', '7.33056', '7.33107', '7.33109', '7.33131', '7.33143', '7.33184', '7.33217', '7.33240', '7.33300', '7.33432', '7.33483', '7.33511', '7.33515', '7.33521', '7.33529', '7.33534', '7.33979', '7.34055', '7.34195', '7.34257', '7.34420', '7.34428', '7.34495', '7.34571', '7.34618', '7.35222', '7.35223', '7.35224', '7.35237', '7.35246', '7.35250', '7.35261', '7.35270', '7.35278', '7.35280', '7.35282', '7.35287', '7.35289', '7.35291', '7.35295', '7.35299', '7.35314', '7.35316', '7.35329', '7.35333', '7.35462', '7.35464', '7.35475', '7.35478', '7.35485', '7.35487', '7.35534', '7.35580', '7.35638', '7.35649', '7.35651', '7.35652', '7.35653', '7.35659', '7.35668', '7.35669', '7.35673', '7.35678', '7.35679', '7.35714', '7.35717', '7.35723', '7.35737', '7.35933', '7.36183', '7.36228', '7.36248', '7.36251', '7.36252', '7.36435', '7.36459', '7.36488', '7.36492', '7.36537', '7.36539', '7.36591', '7.36690', '7.36777', '7.36780', '7.36781', '7.36790', '7.36818', '7.36933', '7.36942', '7.36974', '7.37019', '7.37043', '7.37044', '7.37065', '7.37069', '7.37072', '7.37076', '7.37091', '7.37093', '7.37098', '7.37099', '7.37103', '7.37107', '7.37109', '7.37110', '7.37114', '7.37135', '7.37174', '7.37366', '7.37536', '7.37566', '7.37585', '7.37788', '7.37799', '7.37900', '7.37907', '7.37916', '7.38308', '7.38408', '7.39025', '7.39067', '7.39087', '7.39091', '7.39141', '7.39158', '7.39243', '7.39244', '7.39383', '7.39389', '7.39470', '7.39509', '7.39522', '7.39700', '7.39701', '7.39722', '7.39723', '7.40007', '7.40190', '7.40637', '7.40779', '7.40840', '7.40854', '7.40872', '7.40988', '7.41124', '7.41223', '7.41243', '7.41299', '7.41304', '7.41306', '7.41346', '7.41568', '7.41570', '7.41571', '7.41574', '7.41578', '7.41583', '7.41587', '7.41648', '7.41672', '7.41705', '7.41729', '7.41757', '7.41767', '7.41772', '7.41775', '7.41867', '7.41887', '7.41939', '7.42071', '7.42089', '7.42091', '7.42092', '7.42104', '7.42109', '7.42133', '7.42153', '7.42292', '7.42296', '7.42313', '7.42393', '7.42396', '7.42596', '7.42597', '7.42611', '7.42746', '7.42748', '7.42749', '7.42840', '7.42913', '7.42946', '7.43152', '7.43157', '7.43160', '7.43171', '7.43174', '7.43185', '7.43191', '7.43198', '7.43348', '7.43401', '7.43409', '7.43425', '7.43617', '7.43659', '7.43660', '7.43661', '7.43665', '7.43672', '7.43684', '7.43714', '7.43865', '7.43924', '7.43943', '7.43948', '7.44077', '7.44246', '7.44332', '7.44347', '7.44362', '7.44373', '7.44381', '7.44397', '7.44400', '7.44512', '7.44520', '7.44545', '7.44586', '7.44637', '7.44658', '7.44668', '7.44675', '7.44727', '7.44731', '7.44745', '7.44753', '7.44754', '7.44806', '7.44807', '7.44836', '7.44857', '7.44867', '7.44871', '7.44878', '7.44936', '7.44965', '7.44974', '7.44981', '7.45043', '7.45048', '7.45073', '7.45089', '7.45146', '7.45177', '7.45182', '7.45189', '7.45190', '7.45191', '7.45192', '7.45193', '7.45194', '7.45195', '7.45196', '7.45197', '7.45198', '7.45199', '7.45200', '7.45201', '7.45202', '7.45203', '7.45204', '7.45205', '7.45206', '7.45207', '7.45208', '7.45209', '7.45210', '7.45211', '7.45212', '7.45213', '7.45214', '7.45215', '7.45216', '7.45217', '7.45218', '7.45219', '7.45220', '7.45221', '7.45222', '7.45223', '7.45224', '7.45225', '7.45226', '7.45227', '7.45228', '7.45229', '7.45230', '7.45231', '7.45232', '7.45233', '7.45234', '7.45235', '7.45236', '7.45237', '7.45238', '7.45239', '7.45240', '7.45241', '7.45242', '7.45243', '7.45244', '7.45245', '7.45246', '7.45247', '7.45248', '7.45249', '7.45250', '7.45251', '7.45252', '7.45253', '7.45254', '7.45255', '7.45256', '7.45257', '7.45258', '7.45259', '7.45260', '7.45261', '7.45262', '7.45263', '7.45264', '7.45265', '7.45266', '7.45267', '7.45268', '7.45269', '7.45270', '7.45271', '7.45272', '7.45273', '7.45274', '7.45275', '7.45276', '7.45277', '7.45278', '7.45279', '7.45280', '7.45281', '7.45282', '7.45283', '7.45284', '7.45285', '7.45289', '7.45291', '7.45309', '7.45321', '7.45329', '7.45339', '7.45347', '7.45350', '7.45351', '7.45357', '7.45358', '7.45359', '7.45377', '7.45388', '7.45399', '7.45401', '7.45404', '7.45414', '7.45415', '7.45424', '7.45425', '7.45426', '7.45427', '7.45428', '7.45429', '7.45430', '7.45431', '7.45432', '7.45433', '7.45434', '7.45435', '7.45436', '7.45437', '7.45438', '7.45439', '7.45440', '7.45441', '7.45442', '7.45443', '7.45444', '7.45445', '7.45446', '7.45447', '7.45448', '7.45449', '7.45450', '7.45451', '7.45452', '7.45453', '7.45454', '7.45455', '7.45456', '7.45457', '7.45458', '7.45459', '7.45460', '7.45461', '7.45462', '7.45463', '7.45519', '7.45535', '7.45573', '7.45580', '7.45586', '7.45587', '7.45591', '7.45594', '7.45596', '7.45691', '7.45749', '7.45758', '7.45775', '7.45793', '7.45794', '7.45797', '7.45798', '7.45805', '7.45869', '7.45870', '7.45877', '7.45890', '7.45895', '7.45896', '7.45901', '7.45904', '7.45905', '7.45968', '7.46023', '7.46068', '7.46127', '7.46142', '7.46229', '7.46230', '7.46231', '7.46232', '7.46233']
Outer characteristic polynomial of the knot is: t^5+7t^3+2t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['4.9']
2-strand cable arrow polynomial of the knot is: -96*K1**4 + 176*K1**2*K2 - 80*K1**2 - 64*K2**2 + 62
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['4.9', '6.1990']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk4.9', 'vk4.16', 'vk4.33', 'vk4.52', 'vk4.58', 'vk4.72', 'vk6.3523', 'vk6.3526', 'vk6.3671', 'vk6.3674', 'vk6.3703', 'vk6.3706', 'vk6.3767', 'vk6.3770', 'vk6.3863', 'vk6.3866', 'vk6.3895', 'vk6.3898', 'vk6.3959', 'vk6.3962', 'vk6.4895', 'vk6.4911', 'vk6.4914', 'vk6.4959', 'vk6.4962', 'vk6.5007', 'vk6.5239', 'vk6.5242', 'vk6.5727', 'vk6.5733', 'vk6.5760', 'vk6.5766', 'vk6.6039', 'vk6.6042', 'vk6.6045', 'vk6.6071', 'vk6.6074', 'vk6.6103', 'vk6.6109', 'vk6.6135', 'vk6.6138', 'vk6.6167', 'vk6.6173', 'vk6.6199', 'vk6.6202', 'vk6.6205', 'vk6.6279', 'vk6.6285', 'vk6.6439', 'vk6.6445', 'vk6.6495', 'vk6.6498', 'vk6.6562', 'vk6.6592', 'vk6.6598', 'vk6.6640', 'vk6.6646', 'vk6.6674', 'vk6.6720', 'vk6.6726', 'vk6.6860', 'vk6.6866', 'vk6.6907', 'vk6.6910', 'vk6.6939', 'vk6.6942', 'vk6.7067', 'vk6.7070', 'vk6.7099', 'vk6.7102', 'vk6.7163', 'vk6.7166', 'vk6.7243', 'vk6.7246', 'vk6.7275', 'vk6.7278', 'vk6.7339', 'vk6.7342', 'vk6.7794', 'vk6.7800', 'vk6.7827', 'vk6.7833', 'vk6.8082', 'vk6.8114', 'vk6.8120', 'vk6.8162', 'vk6.8168', 'vk6.8194', 'vk6.8242', 'vk6.8248', 'vk6.8402', 'vk6.8408', 'vk6.8455', 'vk6.8458', 'vk6.8461', 'vk6.8489', 'vk6.8492', 'vk6.8518', 'vk6.8524', 'vk6.8553', 'vk6.8556', 'vk6.8582', 'vk6.8588', 'vk6.8614', 'vk6.8617', 'vk6.8620', 'vk6.8693', 'vk6.8699', 'vk6.8823', 'vk6.8829', 'vk6.8876', 'vk6.8879', 'vk6.9461', 'vk6.9478', 'vk6.9481', 'vk6.9526', 'vk6.9529', 'vk6.9573', 'vk6.9792', 'vk6.9795', 'vk6.11036', 'vk6.11116', 'vk6.11379', 'vk6.11400', 'vk6.11662', 'vk6.11677', 'vk6.12015', 'vk6.12028', 'vk6.12564', 'vk6.12583', 'vk6.12677', 'vk6.12694', 'vk6.13008', 'vk6.13019', 'vk6.13286', 'vk6.13289', 'vk6.13318', 'vk6.13321', 'vk6.13446', 'vk6.13449', 'vk6.13478', 'vk6.13481', 'vk6.13542', 'vk6.13545', 'vk6.13636', 'vk6.13639', 'vk6.13668', 'vk6.13671', 'vk6.13732', 'vk6.13735', 'vk6.14292', 'vk6.14295', 'vk6.14324', 'vk6.14327', 'vk6.14388', 'vk6.14391', 'vk6.14452', 'vk6.14455', 'vk6.14761', 'vk6.14766', 'vk6.14804', 'vk6.14807', 'vk6.15362', 'vk6.15373', 'vk6.15489', 'vk6.15522', 'vk6.15525', 'vk6.15554', 'vk6.15557', 'vk6.15618', 'vk6.15621', 'vk6.15678', 'vk6.15681', 'vk6.15919', 'vk6.15922', 'vk6.15961', 'vk6.15964', 'vk6.16875', 'vk6.16885', 'vk6.17405', 'vk6.18033', 'vk6.18038', 'vk6.18775', 'vk6.18778', 'vk6.19076', 'vk6.19295', 'vk6.19304', 'vk6.19448', 'vk6.19453', 'vk6.19588', 'vk6.19599', 'vk6.19741', 'vk6.19748', 'vk6.19796', 'vk6.19807', 'vk6.19844', 'vk6.19847', 'vk6.20752', 'vk6.20765', 'vk6.20800', 'vk6.20805', 'vk6.20927', 'vk6.21035', 'vk6.21042', 'vk6.21485', 'vk6.21503', 'vk6.21506', 'vk6.21539', 'vk6.21570', 'vk6.21750', 'vk6.21753', 'vk6.21858', 'vk6.21861', 'vk6.22195', 'vk6.22202', 'vk6.22337', 'vk6.22457', 'vk6.22466', 'vk6.22718', 'vk6.22819', 'vk6.22856', 'vk6.22862', 'vk6.22889', 'vk6.22895', 'vk6.22994', 'vk6.23113', 'vk6.23166', 'vk6.23172', 'vk6.23258', 'vk6.23266', 'vk6.23278', 'vk6.23306', 'vk6.23354', 'vk6.23357', 'vk6.23366', 'vk6.23371', 'vk6.23414', 'vk6.23510', 'vk6.23575', 'vk6.23582', 'vk6.23606', 'vk6.23648', 'vk6.23653', 'vk6.23667', 'vk6.23673', 'vk6.23722', 'vk6.23848', 'vk6.23912', 'vk6.24475', 'vk6.24478', 'vk6.24899', 'vk6.24902', 'vk6.25362', 'vk6.25363', 'vk6.25705', 'vk6.25787', 'vk6.25793', 'vk6.25923', 'vk6.25929', 'vk6.26076', 'vk6.26109', 'vk6.26231', 'vk6.26244', 'vk6.26285', 'vk6.26290', 'vk6.26452', 'vk6.26485', 'vk6.26494', 'vk6.26624', 'vk6.26674', 'vk6.26689', 'vk6.26728', 'vk6.26735', 'vk6.27378', 'vk6.27381', 'vk6.27384', 'vk6.27406', 'vk6.27409', 'vk6.27430', 'vk6.27454', 'vk6.27478', 'vk6.27482', 'vk6.27506', 'vk6.27509', 'vk6.27512', 'vk6.27562', 'vk6.27682', 'vk6.27688', 'vk6.27738', 'vk6.27741', 'vk6.27902', 'vk6.27905', 'vk6.28225', 'vk6.28231', 'vk6.28404', 'vk6.28476', 'vk6.28489', 'vk6.29014', 'vk6.29041', 'vk6.29074', 'vk6.29079', 'vk6.29096', 'vk6.29126', 'vk6.29228', 'vk6.29234', 'vk6.29650', 'vk6.29656', 'vk6.29719', 'vk6.29730', 'vk6.29761', 'vk6.29764', 'vk6.29923', 'vk6.29974', 'vk6.30613', 'vk6.30710', 'vk6.30985', 'vk6.31000', 'vk6.31114', 'vk6.31127', 'vk6.31204', 'vk6.32169', 'vk6.32180', 'vk6.32368', 'vk6.32651', 'vk6.32670', 'vk6.32994', 'vk6.33011', 'vk6.33043', 'vk6.33046', 'vk6.33171', 'vk6.33174', 'vk6.33203', 'vk6.33206', 'vk6.33234', 'vk6.33237', 'vk6.33370', 'vk6.33376', 'vk6.33442', 'vk6.33454', 'vk6.33499', 'vk6.33511', 'vk6.33609', 'vk6.34102', 'vk6.34122', 'vk6.34125', 'vk6.34460', 'vk6.34463', 'vk6.34521', 'vk6.34546', 'vk6.34558', 'vk6.34783', 'vk6.34794', 'vk6.34804', 'vk6.34816', 'vk6.34835', 'vk6.34841', 'vk6.34868', 'vk6.34874', 'vk6.35112', 'vk6.35155', 'vk6.35161', 'vk6.35188', 'vk6.35194', 'vk6.35274', 'vk6.35280', 'vk6.35286', 'vk6.35338', 'vk6.35344', 'vk6.35402', 'vk6.35407', 'vk6.35422', 'vk6.35427', 'vk6.35442', 'vk6.35451', 'vk6.35491', 'vk6.35593', 'vk6.35605', 'vk6.35657', 'vk6.35663', 'vk6.35669', 'vk6.35721', 'vk6.35724', 'vk6.35727', 'vk6.35769', 'vk6.35772', 'vk6.35823', 'vk6.35829', 'vk6.35855', 'vk6.35861', 'vk6.35886', 'vk6.35892', 'vk6.35938', 'vk6.35941', 'vk6.36051', 'vk6.36056', 'vk6.36093', 'vk6.36096', 'vk6.36099', 'vk6.36139', 'vk6.36151', 'vk6.36171', 'vk6.36186', 'vk6.36430', 'vk6.36436', 'vk6.36546', 'vk6.36558', 'vk6.36623', 'vk6.36635', 'vk6.37746', 'vk6.37752', 'vk6.37805', 'vk6.37832', 'vk6.37844', 'vk6.37889', 'vk6.37901', 'vk6.37904', 'vk6.37907', 'vk6.38000', 'vk6.38006', 'vk6.38057', 'vk6.38063', 'vk6.38141', 'vk6.38805', 'vk6.38845', 'vk6.38851', 'vk6.38893', 'vk6.38899', 'vk6.38917', 'vk6.38973', 'vk6.38979', 'vk6.38985', 'vk6.39055', 'vk6.39120', 'vk6.39126', 'vk6.39535', 'vk6.39547', 'vk6.39683', 'vk6.39689', 'vk6.39784', 'vk6.39805', 'vk6.39848', 'vk6.39861', 'vk6.39923', 'vk6.39935', 'vk6.39987', 'vk6.39999', 'vk6.40051', 'vk6.40063', 'vk6.40074', 'vk6.40083', 'vk6.40095', 'vk6.40178', 'vk6.40190', 'vk6.40264', 'vk6.40265', 'vk6.40333', 'vk6.40339', 'vk6.40345', 'vk6.40980', 'vk6.40983', 'vk6.40986', 'vk6.41011', 'vk6.41014', 'vk6.41037', 'vk6.41043', 'vk6.41068', 'vk6.41071', 'vk6.41095', 'vk6.41101', 'vk6.41126', 'vk6.41129', 'vk6.41132', 'vk6.41220', 'vk6.41226', 'vk6.41232', 'vk6.41376', 'vk6.41382', 'vk6.41411', 'vk6.41414', 'vk6.41760', 'vk6.41772', 'vk6.41924', 'vk6.41930', 'vk6.42019', 'vk6.42024', 'vk6.42057', 'vk6.42062', 'vk6.42104', 'vk6.42116', 'vk6.42123', 'vk6.42132', 'vk6.42252', 'vk6.42402', 'vk6.42414', 'vk6.42772', 'vk6.42787', 'vk6.42801', 'vk6.42879', 'vk6.42887', 'vk6.42972', 'vk6.42980', 'vk6.43024', 'vk6.43052', 'vk6.43064', 'vk6.43085', 'vk6.43184', 'vk6.43188', 'vk6.43288', 'vk6.43292', 'vk6.43332', 'vk6.43358', 'vk6.43370', 'vk6.43388', 'vk6.43401', 'vk6.43531', 'vk6.43537', 'vk6.43656', 'vk6.43668', 'vk6.43763', 'vk6.43775', 'vk6.43901', 'vk6.43910', 'vk6.44635', 'vk6.44674', 'vk6.44711', 'vk6.44728', 'vk6.44770', 'vk6.44902', 'vk6.44952', 'vk6.44973', 'vk6.45016', 'vk6.45029', 'vk6.45559', 'vk6.45584', 'vk6.45587', 'vk6.45632', 'vk6.45635', 'vk6.45671', 'vk6.45752', 'vk6.45807', 'vk6.45910', 'vk6.45913', 'vk6.46146', 'vk6.46158', 'vk6.46348', 'vk6.46365', 'vk6.46410', 'vk6.46415', 'vk6.46475', 'vk6.46483', 'vk6.46527', 'vk6.46539', 'vk6.46583', 'vk6.46595', 'vk6.46601', 'vk6.46610', 'vk6.46687', 'vk6.46699', 'vk6.46803', 'vk6.46931', 'vk6.46934', 'vk6.47447', 'vk6.47790', 'vk6.47802', 'vk6.47923', 'vk6.47942', 'vk6.48311', 'vk6.48314', 'vk6.48395', 'vk6.48398', 'vk6.48851', 'vk6.48871', 'vk6.48874', 'vk6.48919', 'vk6.48922', 'vk6.49127', 'vk6.49130', 'vk6.49389', 'vk6.49392', 'vk6.49395', 'vk6.49421', 'vk6.49424', 'vk6.49453', 'vk6.49459', 'vk6.49485', 'vk6.49488', 'vk6.49517', 'vk6.49523', 'vk6.49597', 'vk6.49603', 'vk6.49640', 'vk6.49674', 'vk6.49680', 'vk6.49722', 'vk6.49728', 'vk6.49752', 'vk6.49802', 'vk6.49808', 'vk6.49936', 'vk6.50037', 'vk6.50040', 'vk6.50093', 'vk6.50096', 'vk6.50121', 'vk6.50124', 'vk6.50493', 'vk6.50499', 'vk6.50675', 'vk6.50711', 'vk6.50717', 'vk6.50799', 'vk6.50805', 'vk6.50848', 'vk6.50851', 'vk6.50854', 'vk6.50883', 'vk6.50886', 'vk6.50912', 'vk6.50918', 'vk6.50939', 'vk6.50942', 'vk6.51016', 'vk6.51022', 'vk6.51151', 'vk6.51172', 'vk6.51175', 'vk6.51212', 'vk6.51215', 'vk6.51628', 'vk6.51833', 'vk6.52459', 'vk6.53345', 'vk6.53602', 'vk6.53605', 'vk6.53634', 'vk6.53637', 'vk6.53676', 'vk6.53754', 'vk6.54314', 'vk6.54317', 'vk6.54523', 'vk6.54556', 'vk6.54662', 'vk6.54673', 'vk6.54683', 'vk6.54695', 'vk6.55037', 'vk6.55141', 'vk6.55150', 'vk6.55213', 'vk6.55222', 'vk6.55261', 'vk6.55285', 'vk6.55393', 'vk6.55397', 'vk6.55470', 'vk6.55474', 'vk6.55512', 'vk6.55533', 'vk6.55545', 'vk6.55668', 'vk6.55674', 'vk6.55732', 'vk6.55744', 'vk6.55789', 'vk6.55801', 'vk6.57129', 'vk6.57521', 'vk6.57533', 'vk6.57659', 'vk6.57668', 'vk6.57687', 'vk6.57699', 'vk6.58144', 'vk6.58172', 'vk6.58175', 'vk6.58218', 'vk6.58221', 'vk6.58246', 'vk6.58321', 'vk6.58393', 'vk6.58495', 'vk6.58498', 'vk6.58711', 'vk6.58723', 'vk6.58817', 'vk6.58822', 'vk6.58844', 'vk6.58849', 'vk6.58882', 'vk6.58887', 'vk6.58917', 'vk6.58929', 'vk6.59005', 'vk6.59417', 'vk6.59423', 'vk6.59429', 'vk6.59471', 'vk6.59515', 'vk6.59527', 'vk6.59574', 'vk6.59580', 'vk6.59613', 'vk6.59623', 'vk6.59670', 'vk6.59676', 'vk6.59682', 'vk6.59713', 'vk6.59716', 'vk6.59719', 'vk6.59762', 'vk6.59765', 'vk6.59821', 'vk6.59827', 'vk6.59845', 'vk6.59851', 'vk6.59868', 'vk6.59873', 'vk6.59905', 'vk6.59960', 'vk6.59966', 'vk6.60016', 'vk6.60019', 'vk6.60022', 'vk6.60221', 'vk6.60227', 'vk6.60308', 'vk6.60320', 'vk6.60391', 'vk6.60403', 'vk6.60740', 'vk6.60751', 'vk6.61540', 'vk6.61543', 'vk6.61546', 'vk6.61566', 'vk6.61569', 'vk6.61584', 'vk6.61602', 'vk6.61626', 'vk6.61630', 'vk6.61647', 'vk6.61650', 'vk6.61653', 'vk6.61735', 'vk6.61741', 'vk6.61747', 'vk6.61865', 'vk6.61871', 'vk6.61921', 'vk6.61924', 'vk6.62217', 'vk6.62229', 'vk6.62311', 'vk6.62317', 'vk6.62726', 'vk6.62764', 'vk6.62770', 'vk6.62807', 'vk6.62813', 'vk6.62825', 'vk6.62876', 'vk6.62882', 'vk6.62888', 'vk6.62913', 'vk6.63002', 'vk6.63008', 'vk6.63165', 'vk6.63177', 'vk6.63252', 'vk6.63258', 'vk6.64869', 'vk6.64886', 'vk6.64922', 'vk6.64994', 'vk6.65072', 'vk6.65101', 'vk6.65131', 'vk6.65200', 'vk6.65261', 'vk6.66193', 'vk6.66245', 'vk6.66661', 'vk6.66689', 'vk6.66712', 'vk6.66717', 'vk6.66726', 'vk6.66760', 'vk6.66864', 'vk6.66870', 'vk6.67103', 'vk6.67109', 'vk6.67488', 'vk6.67491', 'vk6.67494', 'vk6.67509', 'vk6.67512', 'vk6.67533', 'vk6.67557', 'vk6.67571', 'vk6.67575', 'vk6.67592', 'vk6.67595', 'vk6.67598', 'vk6.67644', 'vk6.67734', 'vk6.67740', 'vk6.67769', 'vk6.67772', 'vk6.67967', 'vk6.67973', 'vk6.69309', 'vk6.69324', 'vk6.69327', 'vk6.69353', 'vk6.69375', 'vk6.69522', 'vk6.69525', 'vk6.71461', 'vk6.71987', 'vk6.72769', 'vk6.72772', 'vk6.72788', 'vk6.72791', 'vk6.73085', 'vk6.73088', 'vk6.73102', 'vk6.73105', 'vk6.73667', 'vk6.73945', 'vk6.74807', 'vk6.74810', 'vk6.74832', 'vk6.75142', 'vk6.75262', 'vk6.75627', 'vk6.75633', 'vk6.75657', 'vk6.75724', 'vk6.75730', 'vk6.75755', 'vk6.75763', 'vk6.75789', 'vk6.75795', 'vk6.75816', 'vk6.75819', 'vk6.75861', 'vk6.75926', 'vk6.76361', 'vk6.76364', 'vk6.76389', 'vk6.77089', 'vk6.77431', 'vk6.77920', 'vk6.77923', 'vk6.77937', 'vk6.77940', 'vk6.77997', 'vk6.78464', 'vk6.78608', 'vk6.78614', 'vk6.78668', 'vk6.78733', 'vk6.78739', 'vk6.78779', 'vk6.78785', 'vk6.78806', 'vk6.78809', 'vk6.78858', 'vk6.78932', 'vk6.79703', 'vk6.79706', 'vk6.79724', 'vk6.80710', 'vk6.80713', 'vk6.80735', 'vk6.82478', 'vk6.82994', 'vk6.83129', 'vk6.83135', 'vk6.83193', 'vk6.83199', 'vk6.83226', 'vk6.83569', 'vk6.83575', 'vk6.83933', 'vk6.84065', 'vk6.84077', 'vk6.84151', 'vk6.84204', 'vk6.84212', 'vk6.84236', 'vk6.84414', 'vk6.84499', 'vk6.84692', 'vk6.84696', 'vk6.85011', 'vk6.85015', 'vk6.85654', 'vk6.85657', 'vk6.85754', 'vk6.85905', 'vk6.85911', 'vk6.85971', 'vk6.86005', 'vk6.86018', 'vk6.86180', 'vk6.86407', 'vk6.86419', 'vk6.86432', 'vk6.86461', 'vk6.86467', 'vk6.86543', 'vk6.86555', 'vk6.86874', 'vk6.87307', 'vk6.87576', 'vk6.87579', 'vk6.87697', 'vk6.87736', 'vk6.87763', 'vk6.87769', 'vk6.87789', 'vk6.87805', 'vk6.88121', 'vk6.88132', 'vk6.88192', 'vk6.88204', 'vk6.88256', 'vk6.88268', 'vk6.88405', 'vk6.88425', 'vk6.88822', 'vk6.89341', 'vk6.89514', 'vk6.89595', 'vk6.89611', 'vk6.89714', 'vk6.89771', 'vk6.90086']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3U2O4U3U4
R3 orbit {'O1O2U1O3U2O4U3U4'}
R3 orbit length 1
Gauss code of -K O1O2U3U4O3U1O4U2
Gauss code of K* O1O2U3U4O3U1O4U2
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 1],[ 1 0 1 1 0],[ 0 -1 0 1 1],[ 0 -1 -1 0 1],[-1 0 -1 -1 0]]
Primitive based matrix [[ 0 1 0 0 -1],[-1 0 -1 -1 0],[ 0 1 0 1 -1],[ 0 1 -1 0 -1],[ 1 0 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,0,0,1,1,1,0,-1,1,1]
Phi over symmetry [-1,0,0,1,0,0,2,-1,0,0]
Phi of -K [-1,0,0,1,0,0,2,-1,0,0]
Phi of K* [-1,0,0,1,0,0,2,-1,0,0]
Phi of -K* [-1,0,0,1,1,1,0,-1,1,1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z+11
Enhanced Jones-Krushkal polynomial 5w^2z+11w
Inner characteristic polynomial t^4+5t^2
Outer characteristic polynomial t^5+7t^3+2t
Flat arrow polynomial 1
2-strand cable arrow polynomial -96*K1**4 + 176*K1**2*K2 - 80*K1**2 - 64*K2**2 + 62
Genus of based matrix 0
Fillings of based matrix [[{1, 4}, {2, 3}]]
If K is slice True
Contact