Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 5.12

Min(phi) over symmetries of the knot is: [-4,1,1,1,1,1,2,3,4,0,0,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['5.12']
Arrow polynomial of the knot is: 2*K2**2 - K4
Flat knots (up to 7 crossings) with same arrow polynomial are :['5.4', '5.12', '7.339', '7.372', '7.683', '7.686', '7.783', '7.835', '7.1400', '7.1509', '7.2242', '7.2291', '7.2585', '7.2587', '7.2589', '7.2606', '7.2607', '7.2776', '7.2941', '7.2953', '7.2956', '7.2957', '7.3001', '7.3005', '7.3308', '7.3356', '7.3463', '7.3497', '7.4355', '7.4630', '7.6229', '7.6235', '7.6242', '7.6283', '7.6342', '7.6479', '7.6854', '7.6912', '7.7078', '7.7178', '7.8229', '7.9338', '7.9346', '7.9415', '7.9424', '7.9478', '7.9487', '7.9524', '7.9549', '7.9674', '7.9728', '7.9827', '7.9931', '7.9936', '7.9941', '7.10092', '7.11563', '7.11618', '7.11635', '7.11705', '7.12038', '7.12304', '7.12350', '7.13109', '7.13121', '7.13180', '7.13218', '7.13238', '7.13252', '7.13426', '7.13553', '7.14151', '7.14201', '7.14879', '7.15006', '7.15093', '7.15121', '7.15135', '7.15143', '7.17076']
Outer characteristic polynomial of the knot is: t^6+50t^4+20t^2
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['5.12']
2-strand cable arrow polynomial of the knot is: -128*K1**2 + 160*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**2 + 64*K2*K3*K5 - 112*K3**2 - 8*K4**4 + 8*K4**2*K8 - 128*K4**2 - 80*K5**2 - 2*K8**2 + 160
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['5.12']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk5.632', 'vk5.634', 'vk5.772', 'vk5.775', 'vk5.1138', 'vk5.1291', 'vk5.1295', 'vk5.1642', 'vk5.1927', 'vk5.1928']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is +.
The reverse -K is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U5U4U3U2
R3 orbit {'O1O2O3O4O5U1U5U4U3U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U4U3U2U1U5
Gauss code of K* Same
Gauss code of -K* O1O2O3O4O5U4U3U2U1U5
Diagrammatic symmetry type +
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 1 1 1 1],[ 4 0 4 3 2 1],[-1 -4 0 0 0 0],[-1 -3 0 0 0 0],[-1 -2 0 0 0 0],[-1 -1 0 0 0 0]]
Primitive based matrix [[ 0 1 1 1 1 -4],[-1 0 0 0 0 -1],[-1 0 0 0 0 -2],[-1 0 0 0 0 -3],[-1 0 0 0 0 -4],[ 4 1 2 3 4 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,-1,4,0,0,0,1,0,0,2,0,3,4]
Phi over symmetry [-4,1,1,1,1,1,2,3,4,0,0,0,0,0,0]
Phi of -K [-4,1,1,1,1,1,2,3,4,0,0,0,0,0,0]
Phi of K* [-1,-1,-1,-1,4,0,0,0,1,0,0,2,0,3,4]
Phi of -K* [-4,1,1,1,1,1,2,3,4,0,0,0,0,0,0]
Symmetry type of based matrix +
u-polynomial t^4-4t
Normalized Jones-Krushkal polynomial -z-1
Enhanced Jones-Krushkal polynomial -8w^4z+8w^3z-w^2z-w
Inner characteristic polynomial t^5+30t^3
Outer characteristic polynomial t^6+50t^4+20t^2
Flat arrow polynomial 2*K2**2 - K4
2-strand cable arrow polynomial -128*K1**2 + 160*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**2 + 64*K2*K3*K5 - 112*K3**2 - 8*K4**4 + 8*K4**2*K8 - 128*K4**2 - 80*K5**2 - 2*K8**2 + 160
Genus of based matrix 1
Fillings of based matrix [[{1, 5}, {2, 4}, {3}], [{2, 5}, {3, 4}, {1}], [{3, 5}, {4}, {1, 2}]]
If K is slice False
Contact