Min(phi) over symmetries of the knot is: [-2,-1,0,1,2,-1,1,1,2,1,1,1,1,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['5.21', '6.969'] |
Arrow polynomial of the knot is: -8*K1**3 + 4*K1*K2 + 4*K1 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['5.21', '5.90', '7.937', '7.5242', '7.10240', '7.10424', '7.15087', '7.16065', '7.16077', '7.16901', '7.19762', '7.19809', '7.20215', '7.20449', '7.23707', '7.24161', '7.24266', '7.24299', '7.26838', '7.29479', '7.29748', '7.29900', '7.29919', '7.30141', '7.30206', '7.30880', '7.31311', '7.31314', '7.32243', '7.32509', '7.32630', '7.32734', '7.34203', '7.34609', '7.37116', '7.37160', '7.37163', '7.37185', '7.37341', '7.37355', '7.39826', '7.40185', '7.40486', '7.41105', '7.41195', '7.41237', '7.41713', '7.41753', '7.41777', '7.43960'] |
Outer characteristic polynomial of the knot is: t^6+33t^4+26t^2 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['5.21'] |
2-strand cable arrow polynomial of the knot is: -896*K1**2*K2**4 + 640*K1**2*K2**3 - 800*K1**2*K2**2 + 480*K1**2*K2 - 224*K1**2 + 512*K1*K2**3*K3 + 352*K1*K2*K3 - 704*K2**6 + 384*K2**4*K4 - 256*K2**4 - 32*K2**2*K3**2 - 16*K2**2*K4**2 + 256*K2**2*K4 + 208*K2**2 - 32*K3**2 - 16*K4**2 + 142 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['5.21'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk5.16', 'vk5.25', 'vk5.61', 'vk5.73', 'vk5.95', 'vk5.116', 'vk5.662', 'vk5.813', 'vk5.1194', 'vk5.1677'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is -. |
The reverse -K is |
The mirror image K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3U4U5U1U2 |
R3 orbit | {'O1O2O3O4O5U3U4U5U1U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U4U5U1U2U3 |
Gauss code of K* | O1O2O3O4O5U4U5U1U2U3 |
Gauss code of -K* | Same |
Diagrammatic symmetry type | - |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 1 -2 0 2],[ 1 0 1 -2 0 2],[-1 -1 0 -2 0 2],[ 2 2 2 0 1 2],[ 0 0 0 -1 0 1],[-2 -2 -2 -2 -1 0]] |
Primitive based matrix | [[ 0 2 1 0 -1 -2],[-2 0 -2 -1 -2 -2],[-1 2 0 0 -1 -2],[ 0 1 0 0 0 -1],[ 1 2 1 0 0 -2],[ 2 2 2 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,1,2,2,1,2,2,0,1,2,0,1,2] |
Phi over symmetry | [-2,-1,0,1,2,-1,1,1,2,1,1,1,1,1,-1] |
Phi of -K | [-2,-1,0,1,2,-1,1,1,2,1,1,1,1,1,-1] |
Phi of K* | [-2,-1,0,1,2,-1,1,1,2,1,1,1,1,1,-1] |
Phi of -K* | [-2,-1,0,1,2,2,1,2,2,0,1,2,0,1,2] |
Symmetry type of based matrix | - |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | -z-1 |
Enhanced Jones-Krushkal polynomial | 8w^3z-9w^2z-w |
Inner characteristic polynomial | t^5+23t^3+6t |
Outer characteristic polynomial | t^6+33t^4+26t^2 |
Flat arrow polynomial | -8*K1**3 + 4*K1*K2 + 4*K1 + 1 |
2-strand cable arrow polynomial | -896*K1**2*K2**4 + 640*K1**2*K2**3 - 800*K1**2*K2**2 + 480*K1**2*K2 - 224*K1**2 + 512*K1*K2**3*K3 + 352*K1*K2*K3 - 704*K2**6 + 384*K2**4*K4 - 256*K2**4 - 32*K2**2*K3**2 - 16*K2**2*K4**2 + 256*K2**2*K4 + 208*K2**2 - 32*K3**2 - 16*K4**2 + 142 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{3, 5}, {4}, {1, 2}]] |
If K is slice | True |