Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 5.90

Min(phi) over symmetries of the knot is: [-2,-1,0,1,2,0,1,0,2,0,1,0,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['5.90', '6.1310']
Arrow polynomial of the knot is: -8*K1**3 + 4*K1*K2 + 4*K1 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['5.21', '5.90', '7.937', '7.5242', '7.10240', '7.10424', '7.15087', '7.16065', '7.16077', '7.16901', '7.19762', '7.19809', '7.20215', '7.20449', '7.23707', '7.24161', '7.24266', '7.24299', '7.26838', '7.29479', '7.29748', '7.29900', '7.29919', '7.30141', '7.30206', '7.30880', '7.31311', '7.31314', '7.32243', '7.32509', '7.32630', '7.32734', '7.34203', '7.34609', '7.37116', '7.37160', '7.37163', '7.37185', '7.37341', '7.37355', '7.39826', '7.40185', '7.40486', '7.41105', '7.41195', '7.41237', '7.41713', '7.41753', '7.41777', '7.43960']
Outer characteristic polynomial of the knot is: t^6+39t^4+74t^2
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['5.90', '6.1310']
2-strand cable arrow polynomial of the knot is: -384*K1**2*K2**4 + 384*K1**2*K2**3 - 672*K1**2*K2**2 + 416*K1**2*K2 - 224*K1**2 + 256*K1*K2**3*K3 + 288*K1*K2*K3 - 192*K2**6 + 128*K2**4*K4 - 384*K2**4 - 32*K2**2*K3**2 - 16*K2**2*K4**2 + 192*K2**2*K4 + 144*K2**2 - 32*K3**2 - 16*K4**2 + 142
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['5.90']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk5.15', 'vk5.24', 'vk5.59', 'vk5.72', 'vk5.97', 'vk5.117', 'vk5.661', 'vk5.812', 'vk5.1191', 'vk5.1678']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O4O5U1U2U3
R3 orbit {'O1O2O3U4U5O4O5U1U2U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U2U3O4O5U4U5
Gauss code of K* O1O2O3U1U2U3O4O5U4U5
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 2 -1 1],[ 2 0 1 2 1 3],[ 0 -1 0 1 -1 1],[-2 -2 -1 0 -3 -1],[ 1 -1 1 3 0 1],[-1 -3 -1 1 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -2],[-2 0 -1 -1 -3 -2],[-1 1 0 -1 -1 -3],[ 0 1 1 0 -1 -1],[ 1 3 1 1 0 -1],[ 2 2 3 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,2,1,1,3,2,1,1,3,1,1,1]
Phi over symmetry [-2,-1,0,1,2,0,1,0,2,0,1,0,0,1,0]
Phi of -K [-2,-1,0,1,2,0,1,0,2,0,1,0,0,1,0]
Phi of K* [-2,-1,0,1,2,0,1,0,2,0,1,0,0,1,0]
Phi of -K* [-2,-1,0,1,2,1,1,3,2,1,1,3,1,1,1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial -z-1
Enhanced Jones-Krushkal polynomial 8w^3z-9w^2z-w
Inner characteristic polynomial t^5+29t^3+54t
Outer characteristic polynomial t^6+39t^4+74t^2
Flat arrow polynomial -8*K1**3 + 4*K1*K2 + 4*K1 + 1
2-strand cable arrow polynomial -384*K1**2*K2**4 + 384*K1**2*K2**3 - 672*K1**2*K2**2 + 416*K1**2*K2 - 224*K1**2 + 256*K1*K2**3*K3 + 288*K1*K2*K3 - 192*K2**6 + 128*K2**4*K4 - 384*K2**4 - 32*K2**2*K3**2 - 16*K2**2*K4**2 + 192*K2**2*K4 + 144*K2**2 - 32*K3**2 - 16*K4**2 + 142
Genus of based matrix 0
Fillings of based matrix [[{4, 5}, {1, 3}, {2}]]
If K is slice True
Contact