Gauss code |
O1O2O3O4U2U3O5U4O6U5U1U6 |
R3 orbit |
{'O1O2O3O4U2U3O5U4O6U5U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U4U6O5U1O6U2U3 |
Gauss code of K* |
O1O2O3U2U4U5U6O4O5U1O6U3 |
Gauss code of -K* |
O1O2O3U1O4U3O5O6U4U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 0 1 0 2],[ 1 0 -2 0 1 1 2],[ 2 2 0 1 2 1 0],[ 0 0 -1 0 1 1 0],[-1 -1 -2 -1 0 1 1],[ 0 -1 -1 -1 -1 0 1],[-2 -2 0 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -2 0],[-1 1 0 -1 1 -1 -2],[ 0 0 1 0 1 0 -1],[ 0 1 -1 -1 0 -1 -1],[ 1 2 1 0 1 0 -2],[ 2 0 2 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,0,1,2,0,1,-1,1,2,-1,0,1,1,1,2] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,1,1,1,4,0,1,1,1,1,2,1,0,2,0] |
Phi of -K |
[-2,-1,0,0,1,2,-1,1,1,1,4,0,1,1,1,1,2,1,0,2,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,1,2,1,4,2,0,1,1,-1,0,1,1,1,-1] |
Phi of -K* |
[-2,-1,0,0,1,2,2,1,1,2,0,0,1,1,2,1,1,0,-1,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+23z+31 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2-2w^3z+25w^2z+31w |
Inner characteristic polynomial |
t^6+21t^4+26t^2 |
Outer characteristic polynomial |
t^7+31t^5+80t^3+9t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 4*K1*K2 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 704*K1**4*K2 - 1248*K1**4 + 192*K1**3*K2*K3 - 96*K1**3*K3 - 896*K1**2*K2**4 + 3232*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 8544*K1**2*K2**2 - 544*K1**2*K2*K4 + 8440*K1**2*K2 - 32*K1**2*K3**2 - 16*K1**2*K4**2 - 5432*K1**2 + 1152*K1*K2**3*K3 - 1440*K1*K2**2*K3 - 160*K1*K2**2*K5 + 6184*K1*K2*K3 + 424*K1*K3*K4 + 16*K1*K4*K5 - 192*K2**6 + 128*K2**4*K4 - 2096*K2**4 - 384*K2**2*K3**2 - 16*K2**2*K4**2 + 1392*K2**2*K4 - 2672*K2**2 + 80*K2*K3*K5 - 1308*K3**2 - 276*K4**2 - 4*K5**2 + 3730 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |