Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1006

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,1,1,1,3,0,0,1,2,1,0,1,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1006']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+35t^5+48t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1006']
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 512*K1**4*K2 - 4464*K1**4 + 64*K1**3*K2*K3 - 160*K1**3*K3 - 2560*K1**2*K2**2 - 64*K1**2*K2*K4 + 7312*K1**2*K2 - 2128*K1**2*K3**2 - 32*K1**2*K3*K5 - 256*K1**2*K4**2 - 4340*K1**2 - 352*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 6088*K1*K2*K3 + 3120*K1*K3*K4 + 344*K1*K4*K5 - 120*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 544*K2**2*K4 - 4060*K2**2 + 264*K2*K3*K5 + 32*K2*K4*K6 - 2760*K3**2 - 1162*K4**2 - 156*K5**2 - 4*K6**2 + 4816
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1006']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3651', 'vk6.3748', 'vk6.3941', 'vk6.4038', 'vk6.4472', 'vk6.4567', 'vk6.5858', 'vk6.5985', 'vk6.7136', 'vk6.7313', 'vk6.7406', 'vk6.7911', 'vk6.8030', 'vk6.9345', 'vk6.17921', 'vk6.18016', 'vk6.18764', 'vk6.24460', 'vk6.24887', 'vk6.25350', 'vk6.37511', 'vk6.43887', 'vk6.44242', 'vk6.44547', 'vk6.48275', 'vk6.48340', 'vk6.50058', 'vk6.50172', 'vk6.50572', 'vk6.50635', 'vk6.55880', 'vk6.60726']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U4O5U1O6U5U6U3
R3 orbit {'O1O2O3O4U2U4O5U1O6U5U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U6O5U4O6U1U3
Gauss code of K* O1O2O3U4U5U3U6O5O6U1O4U2
Gauss code of -K* O1O2O3U2O4U3O5O6U5U1U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 2 1 0 1],[ 2 0 -1 3 1 1 1],[ 2 1 0 2 1 0 0],[-2 -3 -2 0 0 -1 1],[-1 -1 -1 0 0 0 0],[ 0 -1 0 1 0 0 1],[-1 -1 0 -1 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 1 0 -1 -2 -3],[-1 -1 0 0 -1 0 -1],[-1 0 0 0 0 -1 -1],[ 0 1 1 0 0 0 -1],[ 2 2 0 1 0 0 1],[ 2 3 1 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,-1,0,1,2,3,0,1,0,1,0,1,1,0,1,-1]
Phi over symmetry [-2,-2,0,1,1,2,-1,1,1,1,3,0,0,1,2,1,0,1,0,-1,0]
Phi of -K [-2,-2,0,1,1,2,-1,2,2,3,2,1,2,2,1,1,0,1,0,1,2]
Phi of K* [-2,-1,-1,0,2,2,1,2,1,1,2,0,1,2,2,0,2,3,1,2,-1]
Phi of -K* [-2,-2,0,1,1,2,-1,1,1,1,3,0,0,1,2,1,0,1,0,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 21z+43
Enhanced Jones-Krushkal polynomial 21w^2z+43w
Inner characteristic polynomial t^6+21t^4+25t^2+1
Outer characteristic polynomial t^7+35t^5+48t^3+4t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -128*K1**6 + 512*K1**4*K2 - 4464*K1**4 + 64*K1**3*K2*K3 - 160*K1**3*K3 - 2560*K1**2*K2**2 - 64*K1**2*K2*K4 + 7312*K1**2*K2 - 2128*K1**2*K3**2 - 32*K1**2*K3*K5 - 256*K1**2*K4**2 - 4340*K1**2 - 352*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 6088*K1*K2*K3 + 3120*K1*K3*K4 + 344*K1*K4*K5 - 120*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 544*K2**2*K4 - 4060*K2**2 + 264*K2*K3*K5 + 32*K2*K4*K6 - 2760*K3**2 - 1162*K4**2 - 156*K5**2 - 4*K6**2 + 4816
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact