Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1016

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-2,0,1,3,3,1,1,2,1,0,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1016']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+47t^5+46t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1016']
2-strand cable arrow polynomial of the knot is: -1952*K1**4 - 320*K1**3*K3 - 560*K1**2*K2**2 - 128*K1**2*K2*K4 + 4448*K1**2*K2 - 256*K1**2*K3**2 - 3492*K1**2 + 3088*K1*K2*K3 + 608*K1*K3*K4 - 8*K2**4 + 72*K2**2*K4 - 2696*K2**2 - 1436*K3**2 - 242*K4**2 + 2872
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1016']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17113', 'vk6.17356', 'vk6.20577', 'vk6.21986', 'vk6.23508', 'vk6.23847', 'vk6.28039', 'vk6.29498', 'vk6.35649', 'vk6.36088', 'vk6.39453', 'vk6.41654', 'vk6.43013', 'vk6.43325', 'vk6.46037', 'vk6.47705', 'vk6.55252', 'vk6.55504', 'vk6.57443', 'vk6.58614', 'vk6.59658', 'vk6.60006', 'vk6.62114', 'vk6.63084', 'vk6.65050', 'vk6.65247', 'vk6.66979', 'vk6.67844', 'vk6.68315', 'vk6.68465', 'vk6.69594', 'vk6.70287']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U1O5U2O6U5U4U6
R3 orbit {'O1O2O3O4U3U1O5U2O6U5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U6O5U3O6U4U2
Gauss code of K* O1O2O3U4U5U6U2O6O4U1O5U3
Gauss code of -K* O1O2O3U1O4U3O5O6U2U6U4U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 -1 2 0 2],[ 2 0 1 0 3 1 1],[ 1 -1 0 0 3 1 2],[ 1 0 0 0 1 0 1],[-2 -3 -3 -1 0 0 2],[ 0 -1 -1 0 0 0 1],[-2 -1 -2 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 2 0 -1 -1 -2],[-2 0 2 0 -1 -3 -3],[-2 -2 0 -1 -1 -2 -1],[ 0 0 1 0 0 -1 -1],[ 1 1 1 0 0 0 0],[ 1 3 2 1 0 0 -1],[ 2 3 1 1 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,1,1,2,-2,0,1,3,3,1,1,2,1,0,1,1,0,0,1]
Phi over symmetry [-2,-2,0,1,1,2,-2,0,1,3,3,1,1,2,1,0,1,1,0,0,1]
Phi of -K [-2,-1,-1,0,2,2,0,1,1,1,3,0,0,0,1,1,2,2,2,1,-2]
Phi of K* [-2,-2,0,1,1,2,-2,1,1,2,3,2,0,2,1,0,1,1,0,0,1]
Phi of -K* [-2,-1,-1,0,2,2,0,1,1,1,3,0,0,1,1,1,2,3,1,0,-2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+21z+35
Enhanced Jones-Krushkal polynomial 2w^3z^2+21w^2z+35w
Inner characteristic polynomial t^6+33t^4+15t^2
Outer characteristic polynomial t^7+47t^5+46t^3+5t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -1952*K1**4 - 320*K1**3*K3 - 560*K1**2*K2**2 - 128*K1**2*K2*K4 + 4448*K1**2*K2 - 256*K1**2*K3**2 - 3492*K1**2 + 3088*K1*K2*K3 + 608*K1*K3*K4 - 8*K2**4 + 72*K2**2*K4 - 2696*K2**2 - 1436*K3**2 - 242*K4**2 + 2872
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact