Gauss code |
O1O2O3O4U3U1O5U2O6U5U6U4 |
R3 orbit |
{'O1O2O3O4U3U1O5U2O6U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U5U6O5U3O6U4U2 |
Gauss code of K* |
O1O2O3U4U5U6U3O6O4U1O5U2 |
Gauss code of -K* |
O1O2O3U2O4U3O5O6U1U6U4U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 -1 3 0 1],[ 2 0 1 0 3 1 0],[ 1 -1 0 0 3 1 1],[ 1 0 0 0 1 0 0],[-3 -3 -3 -1 0 -1 1],[ 0 -1 -1 0 1 0 1],[-1 0 -1 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 1 -1 -1 -3 -3],[-1 -1 0 -1 0 -1 0],[ 0 1 1 0 0 -1 -1],[ 1 1 0 0 0 0 0],[ 1 3 1 1 0 0 -1],[ 2 3 0 1 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,-1,1,1,3,3,1,0,1,0,0,1,1,0,0,1] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,1,1,3,3,1,0,1,0,0,1,1,0,0,1] |
Phi of -K |
[-2,-1,-1,0,1,3,0,1,1,3,2,0,0,1,1,1,2,3,0,2,3] |
Phi of K* |
[-3,-1,0,1,1,2,3,2,1,3,2,0,1,2,3,0,1,1,0,0,1] |
Phi of -K* |
[-2,-1,-1,0,1,3,0,1,1,0,3,0,0,0,1,1,1,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
Inner characteristic polynomial |
t^6+26t^4+15t^2 |
Outer characteristic polynomial |
t^7+42t^5+40t^3+4t |
Flat arrow polynomial |
8*K1**3 - 10*K1**2 - 6*K1*K2 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-256*K1**6 - 256*K1**4*K2**2 + 2496*K1**4*K2 - 6192*K1**4 + 480*K1**3*K2*K3 - 1184*K1**3*K3 - 192*K1**2*K2**4 + 1120*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 7296*K1**2*K2**2 - 576*K1**2*K2*K4 + 12944*K1**2*K2 - 944*K1**2*K3**2 - 48*K1**2*K4**2 - 6944*K1**2 + 256*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 1248*K1*K2**2*K3 - 64*K1*K2**2*K5 - 160*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8912*K1*K2*K3 + 1864*K1*K3*K4 + 72*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 1032*K2**4 - 256*K2**2*K3**2 - 72*K2**2*K4**2 + 1528*K2**2*K4 - 6042*K2**2 + 296*K2*K3*K5 + 32*K2*K4*K6 - 2928*K3**2 - 946*K4**2 - 96*K5**2 - 6*K6**2 + 6504 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |