Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1019

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,2,2,1,0,1,1,1,-1,0,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1019']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+24t^5+33t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1019']
2-strand cable arrow polynomial of the knot is: -192*K1**6 + 256*K1**4*K2 - 1328*K1**4 + 32*K1**3*K2*K3 - 448*K1**2*K2**2 + 1608*K1**2*K2 - 80*K1**2*K3**2 - 372*K1**2 + 680*K1*K2*K3 + 128*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 648*K2**2 - 284*K3**2 - 54*K4**2 + 692
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1019']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4120', 'vk6.4151', 'vk6.5362', 'vk6.5393', 'vk6.5458', 'vk6.5569', 'vk6.7488', 'vk6.7654', 'vk6.8993', 'vk6.9024', 'vk6.11187', 'vk6.12271', 'vk6.12378', 'vk6.12429', 'vk6.12460', 'vk6.13364', 'vk6.13585', 'vk6.13616', 'vk6.14272', 'vk6.14721', 'vk6.14749', 'vk6.15193', 'vk6.15879', 'vk6.15907', 'vk6.26199', 'vk6.26642', 'vk6.30838', 'vk6.30869', 'vk6.32026', 'vk6.32057', 'vk6.33082', 'vk6.33113', 'vk6.38160', 'vk6.38179', 'vk6.44821', 'vk6.44920', 'vk6.49220', 'vk6.49327', 'vk6.52754', 'vk6.53536']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U1O5U4O6U5U6U2
R3 orbit {'O1O2O3U4U1O5U3O6U5U6O4U2', 'O1O2O3O4U3U1O5U4O6U5U6U2'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U3U5U6O5U1O6U4U2
Gauss code of K* O1O2O3U4U3U5U6O5O4U1O6U2
Gauss code of -K* O1O2O3U2O4U3O5O6U4U6U1U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 -1 1 0 1],[ 2 0 2 0 2 1 0],[-1 -2 0 -1 0 0 1],[ 1 0 1 0 1 1 0],[-1 -2 0 -1 0 1 1],[ 0 -1 0 -1 -1 0 1],[-1 0 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 1 -1 -2],[-1 -1 0 -1 -1 0 0],[-1 0 1 0 0 -1 -2],[ 0 -1 1 0 0 -1 -1],[ 1 1 0 1 1 0 0],[ 2 2 0 2 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,-1,1,2,1,1,0,0,0,1,2,1,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,2,2,1,0,1,1,1,-1,0,-1,-1,0]
Phi of -K [-2,-1,0,1,1,1,1,1,1,1,3,0,1,1,2,1,2,0,0,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,0,2,3,0,1,1,1,2,1,1,0,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,0,2,2,1,0,1,1,1,-1,0,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 11z+23
Enhanced Jones-Krushkal polynomial 11w^2z+23w
Inner characteristic polynomial t^6+16t^4+10t^2
Outer characteristic polynomial t^7+24t^5+33t^3
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -192*K1**6 + 256*K1**4*K2 - 1328*K1**4 + 32*K1**3*K2*K3 - 448*K1**2*K2**2 + 1608*K1**2*K2 - 80*K1**2*K3**2 - 372*K1**2 + 680*K1*K2*K3 + 128*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 648*K2**2 - 284*K3**2 - 54*K4**2 + 692
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{6}, {4, 5}, {3}, {1, 2}]]
If K is slice False
Contact