Gauss code |
O1O2O3O4U3U2O5U4O6U1U6U5 |
R3 orbit |
{'O1O2O3O4U3U2O5U4O6U1U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U4O6U1O5U3U2 |
Gauss code of K* |
O1O2O3U1U4U5U6O5O4U3O6U2 |
Gauss code of -K* |
O1O2O3U2O4U1O5O6U4U6U5U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 -1 1 2 1],[ 2 0 -1 -1 2 3 1],[ 1 1 0 0 2 1 0],[ 1 1 0 0 1 1 0],[-1 -2 -2 -1 0 1 0],[-2 -3 -1 -1 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 -1 -1 -3],[-1 0 0 0 0 0 -1],[-1 1 0 0 -1 -2 -2],[ 1 1 0 1 0 0 1],[ 1 1 0 2 0 0 1],[ 2 3 1 2 -1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,1,1,1,3,0,0,0,1,1,2,2,0,-1,-1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,-1,1,2,3,0,0,1,1,0,2,1,0,0,1] |
Phi of -K |
[-2,-1,-1,1,1,2,2,2,1,2,1,0,0,2,2,1,2,2,0,0,1] |
Phi of K* |
[-2,-1,-1,1,1,2,0,1,2,2,1,0,0,1,1,2,2,2,0,2,2] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,-1,1,2,3,0,0,1,1,0,2,1,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+24t^4+19t^2+1 |
Outer characteristic polynomial |
t^7+36t^5+47t^3+4t |
Flat arrow polynomial |
-4*K1*K2 + 2*K1 + 2*K3 + 1 |
2-strand cable arrow polynomial |
1344*K1**4*K2 - 3856*K1**4 + 384*K1**3*K2*K3 + 96*K1**3*K3*K4 - 1152*K1**3*K3 + 128*K1**2*K2**2*K4 - 3232*K1**2*K2**2 - 800*K1**2*K2*K4 + 8128*K1**2*K2 - 784*K1**2*K3**2 - 240*K1**2*K4**2 - 5168*K1**2 - 672*K1*K2**2*K3 - 96*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6000*K1*K2*K3 + 2168*K1*K3*K4 + 248*K1*K4*K5 - 64*K2**4 - 64*K2**2*K3**2 - 48*K2**2*K4**2 + 1240*K2**2*K4 - 4796*K2**2 + 352*K2*K3*K5 + 32*K2*K4*K6 - 2412*K3**2 - 1164*K4**2 - 180*K5**2 - 4*K6**2 + 4802 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |