Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1038

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,1,1,1,1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1038']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+28t^5+24t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1038']
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 704*K1**4*K2 - 2144*K1**4 + 96*K1**3*K2*K3 - 928*K1**3*K3 - 944*K1**2*K2**2 - 384*K1**2*K2*K4 + 4088*K1**2*K2 - 256*K1**2*K3**2 - 64*K1**2*K4**2 - 2352*K1**2 - 160*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 2632*K1*K2*K3 + 848*K1*K3*K4 + 144*K1*K4*K5 - 24*K2**4 - 48*K2**2*K3**2 - 48*K2**2*K4**2 + 384*K2**2*K4 - 1972*K2**2 + 128*K2*K3*K5 + 32*K2*K4*K6 - 1004*K3**2 - 414*K4**2 - 68*K5**2 - 4*K6**2 + 2044
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1038']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4466', 'vk6.4561', 'vk6.5848', 'vk6.5975', 'vk6.6406', 'vk6.6837', 'vk6.8024', 'vk6.8363', 'vk6.9335', 'vk6.9454', 'vk6.11627', 'vk6.11978', 'vk6.12973', 'vk6.13423', 'vk6.13518', 'vk6.13711', 'vk6.14066', 'vk6.15043', 'vk6.15163', 'vk6.17781', 'vk6.17812', 'vk6.18847', 'vk6.19426', 'vk6.19721', 'vk6.24328', 'vk6.25446', 'vk6.25477', 'vk6.26600', 'vk6.33277', 'vk6.33336', 'vk6.37566', 'vk6.39274', 'vk6.39751', 'vk6.41454', 'vk6.44875', 'vk6.46315', 'vk6.47892', 'vk6.48653', 'vk6.49895', 'vk6.53238']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U2O5U3O6U4U1U6
R3 orbit {'O1O2O3O4U3U5U2O5O6U4U1U6', 'O1O2O3O4U5U2O5U3O6U4U1U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U5U4U1O5U2O6U3U6
Gauss code of K* O1O2O3U2U4U5U1O6O4U6O5U3
Gauss code of -K* O1O2O3U1O4U5O6O5U3U4U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 1 -1 2],[ 1 0 -1 0 2 0 2],[ 1 1 0 0 1 1 1],[ 0 0 0 0 1 0 1],[-1 -2 -1 -1 0 -1 1],[ 1 0 -1 0 1 0 2],[-2 -2 -1 -1 -1 -2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 -1 -1 -1 -2],[ 0 1 1 0 0 0 0],[ 1 1 1 0 0 1 1],[ 1 2 1 0 -1 0 0],[ 1 2 2 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,1,1,2,2,1,1,1,2,0,0,0,-1,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,1,1,1,1,0,-1,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,1,1,2,0,1,0,1,1,1,1,0,1,0]
Phi of K* [-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,1,1,1,1,0,-1,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,1,0,1,1,0,2,2,1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 13z+27
Enhanced Jones-Krushkal polynomial 13w^2z+27w
Inner characteristic polynomial t^6+20t^4+11t^2+1
Outer characteristic polynomial t^7+28t^5+24t^3+4t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -128*K1**6 + 704*K1**4*K2 - 2144*K1**4 + 96*K1**3*K2*K3 - 928*K1**3*K3 - 944*K1**2*K2**2 - 384*K1**2*K2*K4 + 4088*K1**2*K2 - 256*K1**2*K3**2 - 64*K1**2*K4**2 - 2352*K1**2 - 160*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 2632*K1*K2*K3 + 848*K1*K3*K4 + 144*K1*K4*K5 - 24*K2**4 - 48*K2**2*K3**2 - 48*K2**2*K4**2 + 384*K2**2*K4 - 1972*K2**2 + 128*K2*K3*K5 + 32*K2*K4*K6 - 1004*K3**2 - 414*K4**2 - 68*K5**2 - 4*K6**2 + 2044
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact