Gauss code |
O1O2O3O4U5U6O5U1O6U3U4U2 |
R3 orbit |
{'O1O2O3O4U5U6O5U1O6U3U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U1U2O5U4O6U5U6 |
Gauss code of K* |
O1O2O3U4U3U1U2O5O6U5O4U6 |
Gauss code of -K* |
O1O2O3U4O5U6O4O6U2U3U1U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 0 2 -1 0],[ 2 0 2 0 1 2 3],[-1 -2 0 -1 1 -2 0],[ 0 0 1 0 1 -1 1],[-2 -1 -1 -1 0 -3 -1],[ 1 -2 2 1 3 0 0],[ 0 -3 0 -1 1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -3 -1],[-1 1 0 0 -1 -2 -2],[ 0 1 0 0 -1 0 -3],[ 0 1 1 1 0 -1 0],[ 1 3 2 0 1 0 -2],[ 2 1 2 3 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,1,3,1,0,1,2,2,1,0,3,1,0,2] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,-1,2,1,3,1,0,0,0,1,1,1,0,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,-1,-1,2,1,3,1,0,0,0,1,1,1,0,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,1,1,0,3,0,1,0,1,1,0,2,1,-1,-1] |
Phi of -K* |
[-2,-1,0,0,1,2,2,0,3,2,1,1,0,2,3,1,1,1,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
13z+27 |
Enhanced Jones-Krushkal polynomial |
-6w^3z+19w^2z+27w |
Inner characteristic polynomial |
t^6+37t^4+174t^2 |
Outer characteristic polynomial |
t^7+47t^5+236t^3 |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 4*K1*K2 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-256*K1**6 + 256*K1**4*K2**3 - 832*K1**4*K2**2 + 1088*K1**4*K2 - 2688*K1**4 + 352*K1**3*K2*K3 - 960*K1**2*K2**4 + 1632*K1**2*K2**3 - 5088*K1**2*K2**2 + 5592*K1**2*K2 - 128*K1**2*K3**2 - 1956*K1**2 + 832*K1*K2**3*K3 + 2840*K1*K2*K3 + 128*K1*K3*K4 - 192*K2**6 + 128*K2**4*K4 - 1280*K2**4 - 304*K2**2*K3**2 - 16*K2**2*K4**2 + 384*K2**2*K4 - 952*K2**2 + 48*K2*K3*K5 - 556*K3**2 - 100*K4**2 + 2026 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {1, 4}, {3}]] |
If K is slice |
False |