Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1055

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,1,1,2,0,0,1,2,-1,0,0,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1055', '7.36295', '7.42116', '7.43552']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+18t^5+39t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1055', '7.36295', '7.43552']
2-strand cable arrow polynomial of the knot is: -512*K1**6 - 832*K1**4*K2**2 + 2560*K1**4*K2 - 7216*K1**4 + 640*K1**3*K2*K3 - 640*K1**3*K3 + 1568*K1**2*K2**3 - 8352*K1**2*K2**2 - 416*K1**2*K2*K4 + 10240*K1**2*K2 - 48*K1**2*K3**2 - 736*K1**2 - 800*K1*K2**2*K3 + 5072*K1*K2*K3 + 80*K1*K3*K4 - 1040*K2**4 + 744*K2**2*K4 - 2056*K2**2 - 608*K3**2 - 60*K4**2 + 2410
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1055']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.506', 'vk6.599', 'vk6.628', 'vk6.1002', 'vk6.1101', 'vk6.1137', 'vk6.1671', 'vk6.1845', 'vk6.2176', 'vk6.2187', 'vk6.2285', 'vk6.2316', 'vk6.2781', 'vk6.2884', 'vk6.3060', 'vk6.3192', 'vk6.5240', 'vk6.6497', 'vk6.8877', 'vk6.9794', 'vk6.20817', 'vk6.21054', 'vk6.22214', 'vk6.22478', 'vk6.28505', 'vk6.29776', 'vk6.39877', 'vk6.40281', 'vk6.46427', 'vk6.46933', 'vk6.49128', 'vk6.58829']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U6O5U3O6U4U1U2
R3 orbit {'O1O2O3O4U5U6O5U3O6U4U1U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U4U1O5U2O6U5U6
Gauss code of K* O1O2O3U2U3U4U1O5O6U5O4U6
Gauss code of -K* O1O2O3U4O5U6O4O6U3U5U1U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 0 1 -1 0],[ 1 0 1 0 1 0 1],[-1 -1 0 0 1 -2 -1],[ 0 0 0 0 0 0 1],[-1 -1 -1 0 0 -2 0],[ 1 0 2 0 2 0 0],[ 0 -1 1 -1 0 0 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 0 -1 -2],[ 0 0 0 0 1 0 0],[ 0 1 0 -1 0 -1 0],[ 1 1 1 0 1 0 0],[ 1 2 2 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,0,1,1,2,0,0,1,2,-1,0,0,1,0,0]
Phi over symmetry [-1,-1,0,0,1,1,-1,0,1,1,2,0,0,1,2,-1,0,0,1,0,0]
Phi of -K [-1,-1,0,0,1,1,0,0,1,1,1,1,1,0,0,1,0,1,1,1,-1]
Phi of K* [-1,-1,0,0,1,1,-1,1,1,0,1,0,1,0,1,-1,1,0,1,1,0]
Phi of -K* [-1,-1,0,0,1,1,0,0,0,2,2,0,1,1,1,1,0,0,0,1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+14t^4+27t^2
Outer characteristic polynomial t^7+18t^5+39t^3+4t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -512*K1**6 - 832*K1**4*K2**2 + 2560*K1**4*K2 - 7216*K1**4 + 640*K1**3*K2*K3 - 640*K1**3*K3 + 1568*K1**2*K2**3 - 8352*K1**2*K2**2 - 416*K1**2*K2*K4 + 10240*K1**2*K2 - 48*K1**2*K3**2 - 736*K1**2 - 800*K1*K2**2*K3 + 5072*K1*K2*K3 + 80*K1*K3*K4 - 1040*K2**4 + 744*K2**2*K4 - 2056*K2**2 - 608*K3**2 - 60*K4**2 + 2410
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}]]
If K is slice True
Contact