Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1056

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,2,2,3,1,1,1,2,1,1,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1056']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+40t^5+57t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1056']
2-strand cable arrow polynomial of the knot is: 640*K1**4*K2 - 2144*K1**4 + 320*K1**3*K2*K3 + 32*K1**3*K3*K4 - 960*K1**3*K3 - 2720*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 320*K1**2*K2*K4 + 7384*K1**2*K2 - 1120*K1**2*K3**2 - 32*K1**2*K3*K5 - 112*K1**2*K4**2 - 6204*K1**2 - 704*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 6648*K1*K2*K3 + 1808*K1*K3*K4 + 112*K1*K4*K5 - 248*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 840*K2**2*K4 - 4686*K2**2 + 96*K2*K3*K5 + 8*K2*K4*K6 - 2596*K3**2 - 762*K4**2 - 48*K5**2 - 2*K6**2 + 4856
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1056']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81567', 'vk6.81580', 'vk6.81649', 'vk6.81660', 'vk6.81733', 'vk6.81734', 'vk6.81863', 'vk6.81864', 'vk6.82231', 'vk6.82248', 'vk6.82389', 'vk6.82390', 'vk6.82504', 'vk6.82505', 'vk6.82579', 'vk6.82580', 'vk6.83167', 'vk6.83175', 'vk6.83594', 'vk6.83605', 'vk6.84133', 'vk6.84144', 'vk6.84342', 'vk6.84343', 'vk6.84567', 'vk6.84568', 'vk6.86478', 'vk6.86494', 'vk6.88726', 'vk6.88727', 'vk6.88922', 'vk6.88924']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U1O6U2O5U3U6U4
R3 orbit {'O1O2O3O4U5U1O6U2O5U3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U2O6U3O5U4U6
Gauss code of K* O1O2O3U4U5U1U3O6O4U2O5U6
Gauss code of -K* O1O2O3U4O5U2O6O4U1U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 3 -1 1],[ 2 0 1 1 2 1 1],[ 1 -1 0 0 2 1 1],[ 0 -1 0 0 2 0 0],[-3 -2 -2 -2 0 -2 -1],[ 1 -1 -1 0 2 0 1],[-1 -1 -1 0 1 -1 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -2 -2 -2 -2],[-1 1 0 0 -1 -1 -1],[ 0 2 0 0 0 0 -1],[ 1 2 1 0 0 1 -1],[ 1 2 1 0 -1 0 -1],[ 2 2 1 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,1,2,2,2,2,0,1,1,1,0,0,1,-1,1,1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,2,2,3,1,1,1,2,1,1,1,-1,0,0]
Phi of -K [-2,-1,-1,0,1,3,0,0,1,2,3,-1,1,1,2,1,1,2,1,1,1]
Phi of K* [-3,-1,0,1,1,2,1,1,2,2,3,1,1,1,2,1,1,1,-1,0,0]
Phi of -K* [-2,-1,-1,0,1,3,1,1,1,1,2,-1,0,1,2,0,1,2,0,2,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+24t^4+24t^2+1
Outer characteristic polynomial t^7+40t^5+57t^3+8t
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial 640*K1**4*K2 - 2144*K1**4 + 320*K1**3*K2*K3 + 32*K1**3*K3*K4 - 960*K1**3*K3 - 2720*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 320*K1**2*K2*K4 + 7384*K1**2*K2 - 1120*K1**2*K3**2 - 32*K1**2*K3*K5 - 112*K1**2*K4**2 - 6204*K1**2 - 704*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 6648*K1*K2*K3 + 1808*K1*K3*K4 + 112*K1*K4*K5 - 248*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 840*K2**2*K4 - 4686*K2**2 + 96*K2*K3*K5 + 8*K2*K4*K6 - 2596*K3**2 - 762*K4**2 - 48*K5**2 - 2*K6**2 + 4856
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}]]
If K is slice False
Contact