Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1061

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,1,2,3,1,0,0,2,-1,0,0,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1061']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+40t^5+130t^3+24t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1061']
2-strand cable arrow polynomial of the knot is: -192*K1**4 + 1440*K1**2*K2**3 - 4992*K1**2*K2**2 - 128*K1**2*K2*K4 + 5056*K1**2*K2 - 3612*K1**2 + 640*K1*K2**3*K3 - 928*K1*K2**2*K3 - 224*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3960*K1*K2*K3 + 112*K1*K3*K4 + 8*K1*K4*K5 - 864*K2**6 + 992*K2**4*K4 - 3096*K2**4 - 256*K2**3*K6 - 464*K2**2*K3**2 - 88*K2**2*K4**2 + 2152*K2**2*K4 - 1088*K2**2 + 200*K2*K3*K5 + 32*K2*K4*K6 - 840*K3**2 - 246*K4**2 - 4*K5**2 + 2460
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1061']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71622', 'vk6.71784', 'vk6.72203', 'vk6.72349', 'vk6.73376', 'vk6.73539', 'vk6.75285', 'vk6.75552', 'vk6.77244', 'vk6.77328', 'vk6.77575', 'vk6.77683', 'vk6.78268', 'vk6.78518', 'vk6.80080', 'vk6.80230', 'vk6.81113', 'vk6.81178', 'vk6.81197', 'vk6.81234', 'vk6.81326', 'vk6.81515', 'vk6.82011', 'vk6.82432', 'vk6.82745', 'vk6.85445', 'vk6.86341', 'vk6.86927', 'vk6.87145', 'vk6.88085', 'vk6.88666', 'vk6.88771']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U2O6U1O5U6U3U4
R3 orbit {'O1O2O3O4U5U2O6U1O5U6U3U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U2U5O6U4O5U3U6
Gauss code of K* O1O2O3U4U5U2U3O6O5U1O4U6
Gauss code of -K* O1O2O3U4O5U3O6O4U1U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 3 -1 0],[ 2 0 0 2 3 1 0],[ 1 0 0 0 1 1 -1],[-1 -2 0 0 1 0 -1],[-3 -3 -1 -1 0 -2 -1],[ 1 -1 -1 0 2 0 0],[ 0 0 1 1 1 0 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -1 -1 -2 -3],[-1 1 0 -1 0 0 -2],[ 0 1 1 0 1 0 0],[ 1 1 0 -1 0 1 0],[ 1 2 0 0 -1 0 -1],[ 2 3 2 0 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,1,1,1,2,3,1,0,0,2,-1,0,0,-1,0,1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,1,2,3,1,0,0,2,-1,0,0,-1,0,1]
Phi of -K [-2,-1,-1,0,1,3,0,1,2,1,2,1,1,2,2,2,2,3,0,2,1]
Phi of K* [-3,-1,0,1,1,2,1,2,2,3,2,0,2,2,1,1,2,2,-1,0,1]
Phi of -K* [-2,-1,-1,0,1,3,0,1,0,2,3,1,-1,0,1,0,0,2,1,1,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -4w^4z^2+8w^3z^2-8w^3z+25w^2z+19w
Inner characteristic polynomial t^6+24t^4+53t^2+9
Outer characteristic polynomial t^7+40t^5+130t^3+24t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial -192*K1**4 + 1440*K1**2*K2**3 - 4992*K1**2*K2**2 - 128*K1**2*K2*K4 + 5056*K1**2*K2 - 3612*K1**2 + 640*K1*K2**3*K3 - 928*K1*K2**2*K3 - 224*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3960*K1*K2*K3 + 112*K1*K3*K4 + 8*K1*K4*K5 - 864*K2**6 + 992*K2**4*K4 - 3096*K2**4 - 256*K2**3*K6 - 464*K2**2*K3**2 - 88*K2**2*K4**2 + 2152*K2**2*K4 - 1088*K2**2 + 200*K2*K3*K5 + 32*K2*K4*K6 - 840*K3**2 - 246*K4**2 - 4*K5**2 + 2460
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact