Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,1,2,3,1,1,2,2,1,0,2,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1063'] |
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935'] |
Outer characteristic polynomial of the knot is: t^7+43t^5+107t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1063'] |
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 320*K1**4*K2 - 912*K1**4 + 64*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1120*K1**3*K3 + 352*K1**2*K2**3 - 2016*K1**2*K2**2 - 480*K1**2*K2*K4 + 6496*K1**2*K2 - 368*K1**2*K3**2 - 32*K1**2*K3*K5 - 112*K1**2*K4**2 - 5920*K1**2 + 160*K1*K2**3*K3 - 1184*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 5304*K1*K2*K3 + 1640*K1*K3*K4 + 240*K1*K4*K5 - 632*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 1600*K2**2*K4 - 4236*K2**2 + 296*K2*K3*K5 + 32*K2*K4*K6 - 2156*K3**2 - 1038*K4**2 - 156*K5**2 - 12*K6**2 + 4300 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1063'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73331', 'vk6.73341', 'vk6.73494', 'vk6.73503', 'vk6.75251', 'vk6.75264', 'vk6.75501', 'vk6.75509', 'vk6.78215', 'vk6.78231', 'vk6.78455', 'vk6.78474', 'vk6.80039', 'vk6.80054', 'vk6.80189', 'vk6.80203', 'vk6.81935', 'vk6.81939', 'vk6.82195', 'vk6.82211', 'vk6.82662', 'vk6.82663', 'vk6.84725', 'vk6.84727', 'vk6.85025', 'vk6.85031', 'vk6.85753', 'vk6.86502', 'vk6.87328', 'vk6.87688', 'vk6.89626', 'vk6.90087'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U2O6U3O5U1U4U6 |
R3 orbit | {'O1O2O3O4U5U2O6U3O5U1U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U1U4O6U2O5U3U6 |
Gauss code of K* | O1O2O3U1U4U5U2O6O4U3O5U6 |
Gauss code of -K* | O1O2O3U4O5U1O6O4U2U5U6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 0 2 -1 2],[ 2 0 0 2 3 0 2],[ 1 0 0 1 1 0 1],[ 0 -2 -1 0 0 0 1],[-2 -3 -1 0 0 -2 0],[ 1 0 0 0 2 0 2],[-2 -2 -1 -1 0 -2 0]] |
Primitive based matrix | [[ 0 2 2 0 -1 -1 -2],[-2 0 0 0 -1 -2 -3],[-2 0 0 -1 -1 -2 -2],[ 0 0 1 0 -1 0 -2],[ 1 1 1 1 0 0 0],[ 1 2 2 0 0 0 0],[ 2 3 2 2 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,0,1,1,2,0,0,1,2,3,1,1,2,2,1,0,2,0,0,0] |
Phi over symmetry | [-2,-2,0,1,1,2,0,0,1,2,3,1,1,2,2,1,0,2,0,0,0] |
Phi of -K | [-2,-1,-1,0,2,2,1,1,0,1,2,0,0,2,2,1,1,1,2,1,0] |
Phi of K* | [-2,-2,0,1,1,2,0,1,1,2,2,2,1,2,1,1,0,0,0,1,1] |
Phi of -K* | [-2,-1,-1,0,2,2,0,0,2,2,3,0,0,2,2,1,1,1,1,0,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+24w^2z+29w |
Inner characteristic polynomial | t^6+29t^4+60t^2+4 |
Outer characteristic polynomial | t^7+43t^5+107t^3+9t |
Flat arrow polynomial | -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2 |
2-strand cable arrow polynomial | -64*K1**4*K2**2 + 320*K1**4*K2 - 912*K1**4 + 64*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1120*K1**3*K3 + 352*K1**2*K2**3 - 2016*K1**2*K2**2 - 480*K1**2*K2*K4 + 6496*K1**2*K2 - 368*K1**2*K3**2 - 32*K1**2*K3*K5 - 112*K1**2*K4**2 - 5920*K1**2 + 160*K1*K2**3*K3 - 1184*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 5304*K1*K2*K3 + 1640*K1*K3*K4 + 240*K1*K4*K5 - 632*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 1600*K2**2*K4 - 4236*K2**2 + 296*K2*K3*K5 + 32*K2*K4*K6 - 2156*K3**2 - 1038*K4**2 - 156*K5**2 - 12*K6**2 + 4300 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]] |
If K is slice | False |