Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1069

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,0,2,2,4,-1,0,1,1,0,0,1,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1069']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+46t^5+106t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1069']
2-strand cable arrow polynomial of the knot is: -240*K1**4 + 96*K1**2*K2**3 - 688*K1**2*K2**2 + 1168*K1**2*K2 - 80*K1**2*K3**2 - 1280*K1**2 + 96*K1*K2**3*K3 + 1536*K1*K2*K3 + 152*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 840*K2**4 - 240*K2**2*K3**2 - 8*K2**2*K4**2 + 552*K2**2*K4 - 576*K2**2 + 192*K2*K3*K5 - 668*K3**2 - 118*K4**2 - 52*K5**2 + 1116
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1069']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73770', 'vk6.73779', 'vk6.73792', 'vk6.73795', 'vk6.73907', 'vk6.73916', 'vk6.73928', 'vk6.73931', 'vk6.75736', 'vk6.75738', 'vk6.75909', 'vk6.75918', 'vk6.78709', 'vk6.78721', 'vk6.78745', 'vk6.78749', 'vk6.78909', 'vk6.78925', 'vk6.80329', 'vk6.80338', 'vk6.80349', 'vk6.80351', 'vk6.80451', 'vk6.80460', 'vk6.81714', 'vk6.81715', 'vk6.82490', 'vk6.82491', 'vk6.84454', 'vk6.84455', 'vk6.88362', 'vk6.88364']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U3O6U2O5U1U6U4
R3 orbit {'O1O2O3O4U5U3O6U2O5U1U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U4O6U3O5U2U6
Gauss code of K* O1O2O3U1U4U5U3O6O5U2O4U6
Gauss code of -K* O1O2O3U4O5U2O6O4U1U6U5U3
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 3 -1 1],[ 2 0 1 1 4 0 1],[ 1 -1 0 0 2 0 0],[ 0 -1 0 0 0 0 -1],[-3 -4 -2 0 0 -2 -1],[ 1 0 0 0 2 0 1],[-1 -1 0 1 1 -1 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 0 -2 -2 -4],[-1 1 0 1 0 -1 -1],[ 0 0 -1 0 0 0 -1],[ 1 2 0 0 0 0 -1],[ 1 2 1 0 0 0 0],[ 2 4 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,1,0,2,2,4,-1,0,1,1,0,0,1,0,1,0]
Phi over symmetry [-3,-1,0,1,1,2,1,0,2,2,4,-1,0,1,1,0,0,1,0,1,0]
Phi of -K [-2,-1,-1,0,1,3,0,1,1,2,1,0,1,2,2,1,1,2,2,3,1]
Phi of K* [-3,-1,0,1,1,2,1,3,2,2,1,2,1,2,2,1,1,1,0,1,0]
Phi of -K* [-2,-1,-1,0,1,3,0,1,1,1,4,0,0,1,2,0,0,2,-1,0,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial 4w^4z-10w^3z+4w^3+13w^2z+11w
Inner characteristic polynomial t^6+30t^4+41t^2
Outer characteristic polynomial t^7+46t^5+106t^3
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial -240*K1**4 + 96*K1**2*K2**3 - 688*K1**2*K2**2 + 1168*K1**2*K2 - 80*K1**2*K3**2 - 1280*K1**2 + 96*K1*K2**3*K3 + 1536*K1*K2*K3 + 152*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 840*K2**4 - 240*K2**2*K3**2 - 8*K2**2*K4**2 + 552*K2**2*K4 - 576*K2**2 + 192*K2*K3*K5 - 668*K3**2 - 118*K4**2 - 52*K5**2 + 1116
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice False
Contact