Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1074

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,2,3,1,1,1,1,0,0,0,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1074']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+22t^5+33t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1074']
2-strand cable arrow polynomial of the knot is: -784*K1**4 + 576*K1**3*K2*K3 - 288*K1**3*K3 - 704*K1**2*K2**2 - 992*K1**2*K2*K4 + 1864*K1**2*K2 - 1264*K1**2*K3**2 - 2548*K1**2 + 96*K1*K2**2*K3*K4 - 192*K1*K2**2*K3 - 64*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 4040*K1*K2*K3 + 2232*K1*K3*K4 + 8*K1*K4*K5 + 24*K1*K5*K6 - 8*K2**4 - 80*K2**2*K3**2 - 112*K2**2*K4**2 + 664*K2**2*K4 - 2188*K2**2 + 104*K2*K3*K5 + 112*K2*K4*K6 - 1912*K3**2 - 894*K4**2 - 20*K5**2 - 28*K6**2 + 2452
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1074']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10147', 'vk6.10214', 'vk6.10357', 'vk6.10434', 'vk6.16682', 'vk6.19074', 'vk6.19123', 'vk6.19266', 'vk6.19558', 'vk6.22999', 'vk6.23116', 'vk6.25699', 'vk6.25748', 'vk6.26081', 'vk6.26455', 'vk6.29930', 'vk6.29987', 'vk6.30087', 'vk6.34986', 'vk6.35107', 'vk6.37797', 'vk6.37859', 'vk6.42558', 'vk6.44671', 'vk6.51639', 'vk6.51742', 'vk6.54903', 'vk6.56595', 'vk6.59329', 'vk6.64864', 'vk6.66183', 'vk6.66216']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U4O6U1O5U6U3U2
R3 orbit {'O1O2O3O4U5U4O6U1O5U6U3U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U2U5O6U4O5U1U6
Gauss code of K* O1O2O3U4U3U2U5O6O5U1O4U6
Gauss code of -K* O1O2O3U4O5U3O6O4U6U2U1U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 1 -1 0],[ 2 0 2 1 0 1 0],[-1 -2 0 0 1 -1 -1],[-1 -1 0 0 1 -1 -1],[-1 0 -1 -1 0 -1 -1],[ 1 -1 1 1 1 0 0],[ 0 0 1 1 1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 -1 -1 0],[-1 0 1 0 -1 -1 -2],[ 0 1 1 1 0 0 0],[ 1 1 1 1 0 0 -1],[ 2 1 0 2 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,1,1,1,1,0,1,1,2,0,0,1]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,2,3,1,1,1,1,0,0,0,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,0,2,1,2,3,1,1,1,1,0,0,0,0,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,0,1,3,0,0,1,1,0,1,2,1,2,0]
Phi of -K* [-2,-1,0,1,1,1,1,0,0,1,2,0,1,1,1,1,1,1,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2-8w^3z+24w^2z+21w
Inner characteristic polynomial t^6+14t^4+12t^2
Outer characteristic polynomial t^7+22t^5+33t^3+7t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial -784*K1**4 + 576*K1**3*K2*K3 - 288*K1**3*K3 - 704*K1**2*K2**2 - 992*K1**2*K2*K4 + 1864*K1**2*K2 - 1264*K1**2*K3**2 - 2548*K1**2 + 96*K1*K2**2*K3*K4 - 192*K1*K2**2*K3 - 64*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 4040*K1*K2*K3 + 2232*K1*K3*K4 + 8*K1*K4*K5 + 24*K1*K5*K6 - 8*K2**4 - 80*K2**2*K3**2 - 112*K2**2*K4**2 + 664*K2**2*K4 - 2188*K2**2 + 104*K2*K3*K5 + 112*K2*K4*K6 - 1912*K3**2 - 894*K4**2 - 20*K5**2 - 28*K6**2 + 2452
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact