Gauss code |
O1O2O3O4U5U4O6U2O5U1U3U6 |
R3 orbit |
{'O1O2O3O4U5U4O6U2O5U1U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U2U4O6U3O5U1U6 |
Gauss code of K* |
O1O2O3U1U4U2U5O6O5U3O4U6 |
Gauss code of -K* |
O1O2O3U4O5U1O6O4U6U2U5U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 1 -1 2],[ 2 0 1 2 1 0 2],[ 1 -1 0 0 0 0 1],[-1 -2 0 0 1 -2 0],[-1 -1 0 -1 0 -1 -1],[ 1 0 0 2 1 0 2],[-2 -2 -1 0 1 -2 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 1 0 -1 -2 -2],[-1 -1 0 -1 0 -1 -1],[-1 0 1 0 0 -2 -2],[ 1 1 0 0 0 0 -1],[ 1 2 1 2 0 0 0],[ 2 2 1 2 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,-1,0,1,2,2,1,0,1,1,0,2,2,0,1,0] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,1,2,2,1,0,1,1,0,2,2,0,1,0] |
Phi of -K |
[-2,-1,-1,1,1,2,0,1,1,2,2,0,2,2,2,0,1,1,-1,1,2] |
Phi of K* |
[-2,-1,-1,1,1,2,1,2,1,2,2,1,0,2,1,1,2,2,0,1,0] |
Phi of -K* |
[-2,-1,-1,1,1,2,0,1,1,2,2,0,1,2,2,0,0,1,-1,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
9z+19 |
Enhanced Jones-Krushkal polynomial |
-8w^3z+17w^2z+19w |
Inner characteristic polynomial |
t^6+22t^4+24t^2 |
Outer characteristic polynomial |
t^7+34t^5+74t^3 |
Flat arrow polynomial |
4*K1**3 - 4*K1**2 - 8*K1*K2 + K1 + 2*K2 + 3*K3 + 3 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 96*K1**4*K2 - 320*K1**4 + 128*K1**3*K2**3*K3 + 736*K1**3*K2*K3 - 320*K1**2*K2**4 + 224*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 2832*K1**2*K2**2 + 1720*K1**2*K2 - 1184*K1**2*K3**2 - 32*K1**2*K5**2 - 2176*K1**2 + 704*K1*K2**3*K3 + 192*K1*K2*K3**3 + 4856*K1*K2*K3 + 960*K1*K3*K4 + 88*K1*K4*K5 + 80*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 720*K2**4 - 688*K2**2*K3**2 - 64*K2**2*K4**2 + 592*K2**2*K4 - 1818*K2**2 + 352*K2*K3*K5 + 56*K2*K4*K6 - 96*K3**4 + 48*K3**2*K6 - 1880*K3**2 - 504*K4**2 - 144*K5**2 - 62*K6**2 + 2486 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}]] |
If K is slice |
False |