Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1083

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,2,4,2,0,0,2,1,-1,0,1,-1,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.1083']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.573', '6.628', '6.703', '6.704', '6.723', '6.796', '6.1083', '6.1099', '6.1315']
Outer characteristic polynomial of the knot is: t^7+52t^5+88t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1083']
2-strand cable arrow polynomial of the knot is: -752*K1**4 - 1792*K1**2*K2**4 + 4416*K1**2*K2**3 - 8544*K1**2*K2**2 - 32*K1**2*K2*K4 + 7144*K1**2*K2 - 48*K1**2*K3**2 - 4196*K1**2 + 1664*K1*K2**3*K3 - 1888*K1*K2**2*K3 - 192*K1*K2**2*K5 + 5360*K1*K2*K3 + 184*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 3496*K2**4 - 336*K2**2*K3**2 - 8*K2**2*K4**2 + 2088*K2**2*K4 - 1192*K2**2 + 72*K2*K3*K5 - 1064*K3**2 - 230*K4**2 - 4*K5**2 + 2964
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1083']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11410', 'vk6.11691', 'vk6.12708', 'vk6.13067', 'vk6.20268', 'vk6.21587', 'vk6.27532', 'vk6.29106', 'vk6.31143', 'vk6.31466', 'vk6.32289', 'vk6.32736', 'vk6.38935', 'vk6.41160', 'vk6.45697', 'vk6.47411', 'vk6.52161', 'vk6.52388', 'vk6.52974', 'vk6.53308', 'vk6.57101', 'vk6.58273', 'vk6.61680', 'vk6.62839', 'vk6.63739', 'vk6.63837', 'vk6.64157', 'vk6.64355', 'vk6.66736', 'vk6.67610', 'vk6.69388', 'vk6.70120']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U2O5U3U4O6U5U6
R3 orbit {'O1O2O3O4U1U2O5U3U4O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6O5U1U2O6U3U4
Gauss code of K* O1O2U3O4O5U6O3O6U1U2U4U5
Gauss code of -K* O1O2U1O3O4U2O5O6U3U4U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 0 2 1 1],[ 3 0 1 2 3 2 0],[ 1 -1 0 1 2 2 0],[ 0 -2 -1 0 1 2 1],[-2 -3 -2 -1 0 1 1],[-1 -2 -2 -2 -1 0 1],[-1 0 0 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 1 1 -1 -2 -3],[-1 -1 0 1 -2 -2 -2],[-1 -1 -1 0 -1 0 0],[ 0 1 2 1 0 -1 -2],[ 1 2 2 0 1 0 -1],[ 3 3 2 0 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,-1,-1,1,2,3,-1,2,2,2,1,0,0,1,2,1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,2,4,2,0,0,2,1,-1,0,1,-1,2,2]
Phi of -K [-3,-1,0,1,1,2,1,1,2,4,2,0,0,2,1,-1,0,1,-1,2,2]
Phi of K* [-2,-1,-1,0,1,3,2,2,1,1,2,-1,0,2,4,-1,0,2,0,1,1]
Phi of -K* [-3,-1,0,1,1,2,1,2,0,2,3,1,0,2,2,1,2,1,-1,-1,-1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -4w^4z^2+8w^3z^2-8w^3z+25w^2z+19w
Inner characteristic polynomial t^6+36t^4+13t^2+1
Outer characteristic polynomial t^7+52t^5+88t^3+12t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4
2-strand cable arrow polynomial -752*K1**4 - 1792*K1**2*K2**4 + 4416*K1**2*K2**3 - 8544*K1**2*K2**2 - 32*K1**2*K2*K4 + 7144*K1**2*K2 - 48*K1**2*K3**2 - 4196*K1**2 + 1664*K1*K2**3*K3 - 1888*K1*K2**2*K3 - 192*K1*K2**2*K5 + 5360*K1*K2*K3 + 184*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 3496*K2**4 - 336*K2**2*K3**2 - 8*K2**2*K4**2 + 2088*K2**2*K4 - 1192*K2**2 + 72*K2*K3*K5 - 1064*K3**2 - 230*K4**2 - 4*K5**2 + 2964
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact