| Gauss code | O1O2O3O4U1U5O6U4U2O5U3U6 | 
| R3 orbit | {'O1O2O3O4U1U5O6U4U2O5U3U6'} | 
| R3 orbit length | 1 | 
| Gauss code of -K | O1O2O3O4U5U2O6U3U1O5U6U4 | 
| Gauss code of K* | O1O2U3O4O5U2O6O3U1U5U6U4 | 
| Gauss code of -K* | O1O2U3O4O5U1O3O6U5U2U4U6 | 
| Diagrammatic symmetry type | c | 
| Flat genus of the diagram | 3 | 
| If K is checkerboard colorable | False | 
| If K is almost classical | False | 
| Based matrix from Gauss code | [[ 0 -3 0 1 1 -1 2],[ 3 0 2 3 1 1 3],[ 0 -2 0 0 0 -1 2],[-1 -3 0 0 1 -2 1],[-1 -1 0 -1 0 -1 0],[ 1 -1 1 2 1 0 2],[-2 -3 -2 -1 0 -2 0]] | 
| Primitive based matrix | [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -2 -2 -3],[-1 0 0 -1 0 -1 -1],[-1 1 1 0 0 -2 -3],[ 0 2 0 0 0 -1 -2],[ 1 2 1 2 1 0 -1],[ 3 3 1 3 2 1 0]] | 
| If based matrix primitive | True | 
| Phi of primitive based matrix | [-2,-1,-1,0,1,3,0,1,2,2,3,1,0,1,1,0,2,3,1,2,1] | 
| Phi over symmetry | [-3,-1,0,1,1,2,1,1,1,3,2,0,0,1,1,1,1,0,-1,0,1] | 
| Phi of -K | [-3,-1,0,1,1,2,1,1,1,3,2,0,0,1,1,1,1,0,-1,0,1] | 
| Phi of K* | [-2,-1,-1,0,1,3,0,1,0,1,2,1,1,0,1,1,1,3,0,1,1] | 
| Phi of -K* | [-3,-1,0,1,1,2,1,2,1,3,3,1,1,2,2,0,0,2,-1,0,1] | 
| Symmetry type of based matrix | c | 
| u-polynomial | t^3-t^2-t | 
| Normalized Jones-Krushkal polynomial | 5z^2+22z+25 | 
| Enhanced Jones-Krushkal polynomial | 5w^3z^2-4w^3z+26w^2z+25w | 
| Inner characteristic polynomial | t^6+40t^4+52t^2 | 
| Outer characteristic polynomial | t^7+56t^5+85t^3+8t | 
| Flat arrow polynomial | 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 | 
| 2-strand cable arrow polynomial | -496*K1**4 - 256*K1**2*K2**4 + 2176*K1**2*K2**3 - 6464*K1**2*K2**2 - 416*K1**2*K2*K4 + 6824*K1**2*K2 - 16*K1**2*K3**2 - 4772*K1**2 + 512*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 5024*K1*K2*K3 + 328*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1768*K2**4 - 336*K2**2*K3**2 - 8*K2**2*K4**2 + 1192*K2**2*K4 - 2320*K2**2 + 120*K2*K3*K5 - 1112*K3**2 - 238*K4**2 - 4*K5**2 + 3140 | 
| Genus of based matrix | 1 | 
| Fillings of based matrix | [[{5, 6}, {3, 4}, {1, 2}]] | 
| If K is slice | False |