Gauss code |
O1O2O3O4O5O6U3U2U5U6U1U4 |
R3 orbit |
{'O1O2O3O4O5O6U3U2U5U6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U3U6U1U2U5U4 |
Gauss code of K* |
O1O2O3O4O5O6U5U2U1U6U3U4 |
Gauss code of -K* |
O1O2O3O4O5O6U3U4U1U6U5U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -3 -3 3 1 3],[ 1 0 -2 -2 3 1 3],[ 3 2 0 0 4 2 3],[ 3 2 0 0 3 1 2],[-3 -3 -4 -3 0 -1 1],[-1 -1 -2 -1 1 0 1],[-3 -3 -3 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 3 1 -1 -3 -3],[-3 0 1 -1 -3 -3 -4],[-3 -1 0 -1 -3 -2 -3],[-1 1 1 0 -1 -1 -2],[ 1 3 3 1 0 -2 -2],[ 3 3 2 1 2 0 0],[ 3 4 3 2 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,1,3,3,-1,1,3,3,4,1,3,2,3,1,1,2,2,2,0] |
Phi over symmetry |
[-3,-3,-1,1,3,3,-1,1,1,3,4,1,1,2,3,1,2,3,0,0,0] |
Phi of -K |
[-3,-3,-1,1,3,3,0,0,2,2,3,0,3,3,4,1,1,1,1,1,-1] |
Phi of K* |
[-3,-3,-1,1,3,3,-1,1,1,3,4,1,1,2,3,1,2,3,0,0,0] |
Phi of -K* |
[-3,-3,-1,1,3,3,0,2,1,2,3,2,2,3,4,1,3,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+73t^4+28t^2 |
Outer characteristic polynomial |
t^7+111t^5+76t^3+4t |
Flat arrow polynomial |
4*K1**2*K2 - 2*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 - 2*K2**2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 224*K1**4*K2 - 640*K1**4 + 384*K1**3*K2*K3 - 800*K1**3*K3 + 384*K1**2*K2**3 - 1904*K1**2*K2**2 + 32*K1**2*K2*K4**2 - 1024*K1**2*K2*K4 + 3816*K1**2*K2 - 352*K1**2*K3**2 - 64*K1**2*K3*K5 - 320*K1**2*K4**2 - 32*K1**2*K4*K6 - 3596*K1**2 + 288*K1*K2**3*K3 + 416*K1*K2**2*K3*K4 - 416*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 64*K1*K2**2*K5 + 32*K1*K2*K3*K4**2 - 416*K1*K2*K3*K4 + 4120*K1*K2*K3 - 192*K1*K2*K4*K5 - 64*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 1856*K1*K3*K4 + 512*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**4*K4**2 + 96*K2**4*K4 - 472*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 576*K2**2*K3**2 + 32*K2**2*K4**3 - 752*K2**2*K4**2 + 1480*K2**2*K4 - 144*K2**2*K5**2 - 8*K2**2*K6**2 - 2528*K2**2 - 96*K2*K3**2*K4 - 96*K2*K3*K4*K5 + 648*K2*K3*K5 - 32*K2*K4**2*K6 + 416*K2*K4*K6 + 72*K2*K5*K7 + 8*K2*K6*K8 - 32*K3**4 - 64*K3**2*K4**2 + 56*K3**2*K6 - 1680*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1080*K4**2 - 256*K5**2 - 48*K6**2 - 4*K7**2 - 2*K8**2 + 2888 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}]] |
If K is slice |
False |