Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1100

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,0,2,3,2,-1,0,1,1,0,0,0,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1100']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+60t^5+60t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1100']
2-strand cable arrow polynomial of the knot is: -16*K1**4 - 928*K1**3*K3 - 384*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 3192*K1**2*K2 - 656*K1**2*K3**2 - 4012*K1**2 + 160*K1*K2**3*K3 - 256*K1*K2**2*K3 - 416*K1*K2*K3*K4 + 4168*K1*K2*K3 + 752*K1*K3*K4 + 56*K1*K4*K5 - 200*K2**4 - 400*K2**2*K3**2 - 8*K2**2*K4**2 + 464*K2**2*K4 - 2670*K2**2 + 352*K2*K3*K5 + 8*K2*K4*K6 - 1704*K3**2 - 306*K4**2 - 36*K5**2 - 2*K6**2 + 2712
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1100']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73740', 'vk6.73859', 'vk6.74204', 'vk6.74828', 'vk6.75653', 'vk6.75859', 'vk6.76385', 'vk6.76882', 'vk6.78664', 'vk6.78855', 'vk6.79240', 'vk6.79722', 'vk6.80284', 'vk6.80414', 'vk6.80731', 'vk6.81080', 'vk6.81625', 'vk6.81812', 'vk6.81997', 'vk6.82323', 'vk6.82369', 'vk6.82724', 'vk6.83217', 'vk6.84245', 'vk6.84328', 'vk6.84423', 'vk6.84507', 'vk6.85667', 'vk6.86550', 'vk6.87554', 'vk6.88281', 'vk6.89411']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5O6U4U3O5U2U6
R3 orbit {'O1O2O3O4U1U5O6U4U3O5U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3O6U2U1O5U6U4
Gauss code of K* O1O2U3O4O5U2O6O3U1U6U5U4
Gauss code of -K* O1O2U3O4O5U1O3O6U5U4U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 1 1 -1 2],[ 3 0 3 2 1 1 3],[ 0 -3 0 1 1 -2 2],[-1 -2 -1 0 0 -2 1],[-1 -1 -1 0 0 -1 0],[ 1 -1 2 2 1 0 2],[-2 -3 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -2 -2 -3],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 -1 -2 -2],[ 0 2 1 1 0 -2 -3],[ 1 2 1 2 2 0 -1],[ 3 3 1 2 3 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,0,1,2,2,3,0,1,1,1,1,2,2,2,3,1]
Phi over symmetry [-3,-1,0,1,1,2,1,0,2,3,2,-1,0,1,1,0,0,0,0,0,1]
Phi of -K [-3,-1,0,1,1,2,1,0,2,3,2,-1,0,1,1,0,0,0,0,0,1]
Phi of K* [-2,-1,-1,0,1,3,0,1,0,1,2,0,0,0,2,0,1,3,-1,0,1]
Phi of -K* [-3,-1,0,1,1,2,1,3,1,2,3,2,1,2,2,1,1,2,0,0,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w
Inner characteristic polynomial t^6+44t^4+25t^2+1
Outer characteristic polynomial t^7+60t^5+60t^3+8t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -16*K1**4 - 928*K1**3*K3 - 384*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 3192*K1**2*K2 - 656*K1**2*K3**2 - 4012*K1**2 + 160*K1*K2**3*K3 - 256*K1*K2**2*K3 - 416*K1*K2*K3*K4 + 4168*K1*K2*K3 + 752*K1*K3*K4 + 56*K1*K4*K5 - 200*K2**4 - 400*K2**2*K3**2 - 8*K2**2*K4**2 + 464*K2**2*K4 - 2670*K2**2 + 352*K2*K3*K5 + 8*K2*K4*K6 - 1704*K3**2 - 306*K4**2 - 36*K5**2 - 2*K6**2 + 2712
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}]]
If K is slice False
Contact