Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1101

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,1,3,1,1,1,3,2,-1,0,1,-1,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.1101']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+49t^5+85t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1101']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 224*K1**4*K2 - 272*K1**4 + 384*K1**3*K2*K3 - 224*K1**3*K3 + 1024*K1**2*K2**3 - 3872*K1**2*K2**2 - 192*K1**2*K2*K4 + 4032*K1**2*K2 - 144*K1**2*K3**2 - 2948*K1**2 + 384*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 64*K1*K2**2*K5 + 3832*K1*K2*K3 + 328*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1144*K2**4 - 32*K2**3*K6 - 208*K2**2*K3**2 - 16*K2**2*K4**2 + 1048*K2**2*K4 - 1766*K2**2 + 40*K2*K3*K5 + 16*K2*K4*K6 - 1016*K3**2 - 246*K4**2 - 4*K5**2 - 2*K6**2 + 2108
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1101']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11418', 'vk6.11707', 'vk6.12724', 'vk6.13075', 'vk6.20613', 'vk6.22032', 'vk6.28088', 'vk6.29536', 'vk6.31159', 'vk6.31494', 'vk6.32317', 'vk6.32748', 'vk6.39497', 'vk6.41711', 'vk6.46097', 'vk6.47751', 'vk6.52176', 'vk6.52418', 'vk6.52999', 'vk6.53320', 'vk6.57489', 'vk6.58666', 'vk6.62171', 'vk6.63128', 'vk6.63747', 'vk6.63853', 'vk6.64169', 'vk6.64361', 'vk6.67011', 'vk6.67882', 'vk6.69635', 'vk6.70321']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U1O5U3U4O6U5U6
R3 orbit {'O1O2O3O4U2U1O5U3U4O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6O5U1U2O6U4U3
Gauss code of K* O1O2U3O4O5U6O3O6U2U1U4U5
Gauss code of -K* O1O2U1O3O4U2O5O6U3U4U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 0 2 1 1],[ 2 0 0 2 3 2 0],[ 2 0 0 1 2 2 0],[ 0 -2 -1 0 1 2 1],[-2 -3 -2 -1 0 1 1],[-1 -2 -2 -2 -1 0 1],[-1 0 0 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 1 1 -1 -2 -3],[-1 -1 0 1 -2 -2 -2],[-1 -1 -1 0 -1 0 0],[ 0 1 2 1 0 -1 -2],[ 2 2 2 0 1 0 0],[ 2 3 2 0 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,-1,-1,1,2,3,-1,2,2,2,1,0,0,1,2,0]
Phi over symmetry [-2,-2,0,1,1,2,0,0,1,3,1,1,1,3,2,-1,0,1,-1,2,2]
Phi of -K [-2,-2,0,1,1,2,0,0,1,3,1,1,1,3,2,-1,0,1,-1,2,2]
Phi of K* [-2,-1,-1,0,2,2,2,2,1,1,2,-1,0,3,3,-1,1,1,0,1,0]
Phi of -K* [-2,-2,0,1,1,2,0,1,0,2,2,2,0,2,3,1,2,1,-1,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial -4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w
Inner characteristic polynomial t^6+35t^4+18t^2+1
Outer characteristic polynomial t^7+49t^5+85t^3+8t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -256*K1**4*K2**2 + 224*K1**4*K2 - 272*K1**4 + 384*K1**3*K2*K3 - 224*K1**3*K3 + 1024*K1**2*K2**3 - 3872*K1**2*K2**2 - 192*K1**2*K2*K4 + 4032*K1**2*K2 - 144*K1**2*K3**2 - 2948*K1**2 + 384*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 64*K1*K2**2*K5 + 3832*K1*K2*K3 + 328*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1144*K2**4 - 32*K2**3*K6 - 208*K2**2*K3**2 - 16*K2**2*K4**2 + 1048*K2**2*K4 - 1766*K2**2 + 40*K2*K3*K5 + 16*K2*K4*K6 - 1016*K3**2 - 246*K4**2 - 4*K5**2 - 2*K6**2 + 2108
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact