Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,-1,-1,0,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1108'] |
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932'] |
Outer characteristic polynomial of the knot is: t^7+32t^5+32t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1108'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 192*K1**4*K2 - 1616*K1**4 - 752*K1**2*K2**2 + 1968*K1**2*K2 - 1072*K1**2*K3**2 - 416*K1**2*K4**2 - 888*K1**2 + 2040*K1*K2*K3 + 1312*K1*K3*K4 + 296*K1*K4*K5 - 48*K2**4 - 112*K2**2*K3**2 - 48*K2**2*K4**2 + 152*K2**2*K4 - 1076*K2**2 + 88*K2*K3*K5 + 32*K2*K4*K6 - 852*K3**2 - 384*K4**2 - 60*K5**2 - 4*K6**2 + 1374 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1108'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4824', 'vk6.5168', 'vk6.6389', 'vk6.6822', 'vk6.8346', 'vk6.8780', 'vk6.9720', 'vk6.10024', 'vk6.11610', 'vk6.11963', 'vk6.12956', 'vk6.20468', 'vk6.20731', 'vk6.21823', 'vk6.27852', 'vk6.29362', 'vk6.31421', 'vk6.32599', 'vk6.39282', 'vk6.39771', 'vk6.41462', 'vk6.46335', 'vk6.47585', 'vk6.47912', 'vk6.49050', 'vk6.49880', 'vk6.51306', 'vk6.51524', 'vk6.53221', 'vk6.57339', 'vk6.62025', 'vk6.64310'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2U4O5U1U3O6U5U6 |
R3 orbit | {'O1O2O3O4U2U4O5U1U3O6U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6O5U2U4O6U1U3 |
Gauss code of K* | O1O2U3O4O5U6O3O6U4U1U5U2 |
Gauss code of -K* | O1O2U1O3O4U2O5O6U5U3U6U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 1 1 1 1],[ 2 0 -1 2 1 2 1],[ 2 1 0 2 1 1 0],[-1 -2 -2 0 0 1 1],[-1 -1 -1 0 0 0 0],[-1 -2 -1 -1 0 0 1],[-1 -1 0 -1 0 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 1 -2 -2],[-1 0 1 1 0 -2 -2],[-1 -1 0 1 0 -1 -2],[-1 -1 -1 0 0 0 -1],[-1 0 0 0 0 -1 -1],[ 2 2 1 0 1 0 1],[ 2 2 2 1 1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,-1,2,2,-1,-1,0,2,2,-1,0,1,2,0,0,1,1,1,-1] |
Phi over symmetry | [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,-1,-1,0,0,-1] |
Phi of -K | [-2,-2,1,1,1,1,-1,1,2,2,3,1,1,2,2,-1,0,-1,0,-1,0] |
Phi of K* | [-1,-1,-1,-1,2,2,-1,-1,0,2,3,-1,0,1,2,0,1,1,2,2,-1] |
Phi of -K* | [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,-1,-1,0,0,-1] |
Symmetry type of based matrix | c |
u-polynomial | 2t^2-4t |
Normalized Jones-Krushkal polynomial | 13z+27 |
Enhanced Jones-Krushkal polynomial | 13w^2z+27w |
Inner characteristic polynomial | t^6+20t^4+12t^2 |
Outer characteristic polynomial | t^7+32t^5+32t^3 |
Flat arrow polynomial | -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial | -128*K1**6 + 192*K1**4*K2 - 1616*K1**4 - 752*K1**2*K2**2 + 1968*K1**2*K2 - 1072*K1**2*K3**2 - 416*K1**2*K4**2 - 888*K1**2 + 2040*K1*K2*K3 + 1312*K1*K3*K4 + 296*K1*K4*K5 - 48*K2**4 - 112*K2**2*K3**2 - 48*K2**2*K4**2 + 152*K2**2*K4 - 1076*K2**2 + 88*K2*K3*K5 + 32*K2*K4*K6 - 852*K3**2 - 384*K4**2 - 60*K5**2 - 4*K6**2 + 1374 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice | False |