Gauss code |
O1O2O3O4O5O6U3U2U6U1U5U4 |
R3 orbit |
{'O1O2O3O4O5O6U3U2U6U1U5U4'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3O4O5O6U4U2U1U6U5U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U2U1U6U5U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -3 -3 3 3 2],[ 2 0 -1 -1 4 3 2],[ 3 1 0 0 4 3 2],[ 3 1 0 0 3 2 1],[-3 -4 -4 -3 0 0 0],[-3 -3 -3 -2 0 0 0],[-2 -2 -2 -1 0 0 0]] |
Primitive based matrix |
[[ 0 3 3 2 -2 -3 -3],[-3 0 0 0 -3 -2 -3],[-3 0 0 0 -4 -3 -4],[-2 0 0 0 -2 -1 -2],[ 2 3 4 2 0 -1 -1],[ 3 2 3 1 1 0 0],[ 3 3 4 2 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-2,2,3,3,0,0,3,2,3,0,4,3,4,2,1,2,1,1,0] |
Phi over symmetry |
[-3,-3,-2,2,3,3,0,0,3,2,3,0,4,3,4,2,1,2,1,1,0] |
Phi of -K |
[-3,-3,-2,2,3,3,0,0,3,2,3,0,4,3,4,2,1,2,1,1,0] |
Phi of K* |
[-3,-3,-2,2,3,3,0,1,1,2,3,1,2,3,4,2,3,4,0,0,0] |
Phi of -K* |
[-3,-3,-2,2,3,3,0,1,1,2,3,1,2,3,4,2,3,4,0,0,0] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+25z+19 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+25w^2z+19w |
Inner characteristic polynomial |
t^6+74t^4+15t^2 |
Outer characteristic polynomial |
t^7+118t^5+105t^3+4t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1*K3 + K4 |
2-strand cable arrow polynomial |
960*K1**2*K2**3 - 2624*K1**2*K2**2 - 320*K1**2*K2*K4 + 2304*K1**2*K2 - 288*K1**2*K3**2 - 192*K1**2*K3*K5 - 32*K1**2*K5**2 - 2224*K1**2 + 192*K1*K2**2*K3*K4 - 576*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 - 640*K1*K2**2*K5 - 192*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 3200*K1*K2*K3 - 64*K1*K2*K4*K5 - 64*K1*K2*K5*K6 + 704*K1*K3*K4 + 608*K1*K4*K5 + 80*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 976*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 384*K2**2*K3**2 - 352*K2**2*K4**2 + 1216*K2**2*K4 - 320*K2**2*K5**2 - 48*K2**2*K6**2 - 1520*K2**2 + 1136*K2*K3*K5 + 288*K2*K4*K6 + 112*K2*K5*K7 + 16*K2*K6*K8 + 48*K3**2*K6 - 1072*K3**2 - 552*K4**2 - 480*K5**2 - 80*K6**2 - 2*K8**2 + 1912 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}]] |
If K is slice |
False |