Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1128

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,2,2,3,1,1,1,1,1,0,1,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1128']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+29t^5+54t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1008', '6.1128']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 704*K1**4*K2**2 + 1728*K1**4*K2 - 4672*K1**4 + 640*K1**3*K2*K3 - 1056*K1**3*K3 - 192*K1**2*K2**4 + 1632*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 7600*K1**2*K2**2 - 1152*K1**2*K2*K4 + 10128*K1**2*K2 - 320*K1**2*K3**2 - 48*K1**2*K4**2 - 3812*K1**2 + 512*K1*K2**3*K3 - 736*K1*K2**2*K3 - 320*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6752*K1*K2*K3 + 672*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1072*K2**4 - 32*K2**3*K6 - 256*K2**2*K3**2 - 16*K2**2*K4**2 + 1032*K2**2*K4 - 3198*K2**2 + 192*K2*K3*K5 + 16*K2*K4*K6 - 1284*K3**2 - 260*K4**2 - 24*K5**2 - 2*K6**2 + 3498
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1128']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4696', 'vk6.4999', 'vk6.6186', 'vk6.6657', 'vk6.8183', 'vk6.8601', 'vk6.9565', 'vk6.9904', 'vk6.17390', 'vk6.20911', 'vk6.20975', 'vk6.22323', 'vk6.22399', 'vk6.23561', 'vk6.23898', 'vk6.28387', 'vk6.36158', 'vk6.40041', 'vk6.40168', 'vk6.42094', 'vk6.43073', 'vk6.43377', 'vk6.46569', 'vk6.46673', 'vk6.48736', 'vk6.49536', 'vk6.49739', 'vk6.51436', 'vk6.55556', 'vk6.58911', 'vk6.65294', 'vk6.69763']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U1O5U3U4O6U2U6
R3 orbit {'O1O2O3O4U5U1O5U3U4O6U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3O5U1U2O6U4U6
Gauss code of K* O1O2U1O3O4U5O6O5U2U6U3U4
Gauss code of -K* O1O2U1O3O4U5O6O5U3U4U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 2 -1 1],[ 2 0 2 0 1 2 1],[ 0 -2 0 -1 1 0 1],[ 0 0 1 0 1 0 0],[-2 -1 -1 -1 0 -2 0],[ 1 -2 0 0 2 0 1],[-1 -1 -1 0 0 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -1 -2 -1],[-1 0 0 0 -1 -1 -1],[ 0 1 0 0 1 0 0],[ 0 1 1 -1 0 0 -2],[ 1 2 1 0 0 0 -2],[ 2 1 1 0 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,1,2,1,0,1,1,1,-1,0,0,0,2,2]
Phi over symmetry [-2,-1,0,0,1,2,-1,0,2,2,3,1,1,1,1,1,0,1,1,1,1]
Phi of -K [-2,-1,0,0,1,2,-1,0,2,2,3,1,1,1,1,1,0,1,1,1,1]
Phi of K* [-2,-1,0,0,1,2,1,1,1,1,3,0,1,1,2,-1,1,0,1,2,-1]
Phi of -K* [-2,-1,0,0,1,2,2,0,2,1,1,0,0,1,2,1,0,1,1,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2+23w^2z+31w
Inner characteristic polynomial t^6+19t^4+24t^2+1
Outer characteristic polynomial t^7+29t^5+54t^3+6t
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -256*K1**6 - 704*K1**4*K2**2 + 1728*K1**4*K2 - 4672*K1**4 + 640*K1**3*K2*K3 - 1056*K1**3*K3 - 192*K1**2*K2**4 + 1632*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 7600*K1**2*K2**2 - 1152*K1**2*K2*K4 + 10128*K1**2*K2 - 320*K1**2*K3**2 - 48*K1**2*K4**2 - 3812*K1**2 + 512*K1*K2**3*K3 - 736*K1*K2**2*K3 - 320*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6752*K1*K2*K3 + 672*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1072*K2**4 - 32*K2**3*K6 - 256*K2**2*K3**2 - 16*K2**2*K4**2 + 1032*K2**2*K4 - 3198*K2**2 + 192*K2*K3*K5 + 16*K2*K4*K6 - 1284*K3**2 - 260*K4**2 - 24*K5**2 - 2*K6**2 + 3498
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]]
If K is slice False
Contact