Gauss code |
O1O2O3O4O5O6U3U4U5U6U1U2 |
R3 orbit |
{'O1O2O3O4O5O6U3U4U5U6U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U6U1U2U3U4 |
Gauss code of K* |
O1O2O3O4O5O6U5U6U1U2U3U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -3 -1 1 3],[ 1 0 1 -3 -1 1 3],[-1 -1 0 -3 -1 1 3],[ 3 3 3 0 1 2 3],[ 1 1 1 -1 0 1 2],[-1 -1 -1 -2 -1 0 1],[-3 -3 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -1 -3],[-3 0 -1 -3 -2 -3 -3],[-1 1 0 -1 -1 -1 -2],[-1 3 1 0 -1 -1 -3],[ 1 2 1 1 0 1 -1],[ 1 3 1 1 -1 0 -3],[ 3 3 2 3 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,1,3,1,3,2,3,3,1,1,1,2,1,1,3,-1,1,3] |
Phi over symmetry |
[-3,-1,-1,1,1,3,-1,1,1,2,3,1,1,1,1,1,1,2,-1,-1,1] |
Phi of -K |
[-3,-1,-1,1,1,3,-1,1,1,2,3,1,1,1,1,1,1,2,-1,-1,1] |
Phi of K* |
[-3,-1,-1,1,1,3,-1,1,1,2,3,1,1,1,1,1,1,2,-1,-1,1] |
Phi of -K* |
[-3,-1,-1,1,1,3,1,3,2,3,3,1,1,1,2,1,1,3,-1,1,3] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
z+3 |
Enhanced Jones-Krushkal polynomial |
12w^4z-12w^3z+w^2z+3w |
Inner characteristic polynomial |
t^6+61t^4+20t^2 |
Outer characteristic polynomial |
t^7+83t^5+80t^3 |
Flat arrow polynomial |
-16*K1**4 + 8*K1**2*K2 + 8*K1**2 + 1 |
2-strand cable arrow polynomial |
-640*K1**4 - 3584*K1**2*K2**6 + 2560*K1**2*K2**5 - 384*K1**2*K2**4 - 256*K1**2*K2**3 - 1312*K1**2*K2**2 + 1440*K1**2*K2 - 256*K1**2*K3**2 - 304*K1**2 + 2048*K1*K2**5*K3 - 256*K1*K2**3*K3 + 1184*K1*K2*K3 + 160*K1*K3*K4 - 2816*K2**8 + 1536*K2**6*K4 + 1280*K2**6 - 128*K2**4*K3**2 - 64*K2**4*K4**2 - 256*K2**4*K4 - 256*K2**4 - 224*K2**2*K3**2 + 320*K2**2*K4 - 128*K2**2 + 128*K2*K3*K5 - 168*K3**2 - 32*K4**2 - 8*K5**2 + 414 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
True |