Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1147

Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,0,1,2,1,3,0,0,1,0,0,1,1,1,2,-2]
Flat knots (up to 7 crossings) with same phi are :['6.1147']
Arrow polynomial of the knot is: -2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + 2*K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.126', '6.195', '6.367', '6.438', '6.869', '6.872', '6.896', '6.1147']
Outer characteristic polynomial of the knot is: t^7+45t^5+86t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1147']
2-strand cable arrow polynomial of the knot is: -576*K1**3*K3 - 192*K1**2*K2**2 + 288*K1**2*K2*K3**2 + 2976*K1**2*K2 - 2240*K1**2*K3**2 - 96*K1**2*K3*K5 - 48*K1**2*K6**2 - 4932*K1**2 + 64*K1*K2**3*K3 - 1120*K1*K2**2*K3 + 288*K1*K2*K3**3 - 288*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6200*K1*K2*K3 - 32*K1*K2*K5*K6 - 64*K1*K3**2*K5 + 2832*K1*K3*K4 + 192*K1*K4*K5 + 200*K1*K5*K6 + 80*K1*K6*K7 - 64*K2**4 - 32*K2**3*K6 - 880*K2**2*K3**2 - 8*K2**2*K4**2 + 568*K2**2*K4 - 16*K2**2*K6**2 - 3614*K2**2 - 128*K2*K3**2*K4 + 1032*K2*K3*K5 + 224*K2*K4*K6 + 16*K2*K5*K7 + 32*K2*K6*K8 - 256*K3**4 + 296*K3**2*K6 - 2992*K3**2 - 928*K4**2 - 400*K5**2 - 242*K6**2 - 28*K7**2 - 12*K8**2 + 4090
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1147']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4643', 'vk6.4920', 'vk6.6081', 'vk6.6580', 'vk6.8104', 'vk6.8498', 'vk6.9488', 'vk6.9853', 'vk6.20630', 'vk6.22057', 'vk6.28116', 'vk6.29557', 'vk6.39540', 'vk6.41763', 'vk6.46151', 'vk6.47793', 'vk6.48675', 'vk6.48864', 'vk6.49415', 'vk6.49650', 'vk6.50689', 'vk6.50876', 'vk6.51166', 'vk6.51381', 'vk6.57530', 'vk6.58718', 'vk6.62226', 'vk6.63172', 'vk6.67032', 'vk6.67905', 'vk6.69661', 'vk6.70342']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U3U2O5O6U5U4U6
R3 orbit {'O1O2O3O4U1U3U2O5O6U5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U6O5O6U3U2U4
Gauss code of K* O1O2O3U4U5O4O6O5U1U3U2U6
Gauss code of -K* O1O2O3U1U3O4O5O6U2U5U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 2 -1 2],[ 3 0 2 1 3 0 1],[ 0 -2 0 0 2 0 1],[ 0 -1 0 0 1 0 1],[-2 -3 -2 -1 0 0 2],[ 1 0 0 0 0 0 1],[-2 -1 -1 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 2 0 0 -1 -3],[-2 0 2 -1 -2 0 -3],[-2 -2 0 -1 -1 -1 -1],[ 0 1 1 0 0 0 -1],[ 0 2 1 0 0 0 -2],[ 1 0 1 0 0 0 0],[ 3 3 1 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,0,1,3,-2,1,2,0,3,1,1,1,1,0,0,1,0,2,0]
Phi over symmetry [-3,-1,0,0,2,2,0,1,2,1,3,0,0,1,0,0,1,1,1,2,-2]
Phi of -K [-3,-1,0,0,2,2,2,1,2,2,4,1,1,3,2,0,0,1,1,1,-2]
Phi of K* [-2,-2,0,0,1,3,-2,1,1,2,4,0,1,3,2,0,1,1,1,2,2]
Phi of -K* [-3,-1,0,0,2,2,0,1,2,1,3,0,0,1,0,0,1,1,1,2,-2]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2+23w^2z+31w
Inner characteristic polynomial t^6+27t^4+30t^2
Outer characteristic polynomial t^7+45t^5+86t^3+5t
Flat arrow polynomial -2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + 2*K4 + 1
2-strand cable arrow polynomial -576*K1**3*K3 - 192*K1**2*K2**2 + 288*K1**2*K2*K3**2 + 2976*K1**2*K2 - 2240*K1**2*K3**2 - 96*K1**2*K3*K5 - 48*K1**2*K6**2 - 4932*K1**2 + 64*K1*K2**3*K3 - 1120*K1*K2**2*K3 + 288*K1*K2*K3**3 - 288*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6200*K1*K2*K3 - 32*K1*K2*K5*K6 - 64*K1*K3**2*K5 + 2832*K1*K3*K4 + 192*K1*K4*K5 + 200*K1*K5*K6 + 80*K1*K6*K7 - 64*K2**4 - 32*K2**3*K6 - 880*K2**2*K3**2 - 8*K2**2*K4**2 + 568*K2**2*K4 - 16*K2**2*K6**2 - 3614*K2**2 - 128*K2*K3**2*K4 + 1032*K2*K3*K5 + 224*K2*K4*K6 + 16*K2*K5*K7 + 32*K2*K6*K8 - 256*K3**4 + 296*K3**2*K6 - 2992*K3**2 - 928*K4**2 - 400*K5**2 - 242*K6**2 - 28*K7**2 - 12*K8**2 + 4090
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact