Gauss code |
O1O2O3O4O5O6U3U4U6U5U1U2 |
R3 orbit |
{'O1O2O3O4O5O6U3U4U6U5U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U6U2U1U3U4 |
Gauss code of K* |
O1O2O3O4O5O6U5U6U1U2U4U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U3U5U6U1U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -3 -1 2 2],[ 1 0 1 -3 -1 2 2],[-1 -1 0 -3 -1 2 2],[ 3 3 3 0 1 3 2],[ 1 1 1 -1 0 2 1],[-2 -2 -2 -3 -2 0 0],[-2 -2 -2 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -1 -3],[-2 0 0 -2 -1 -2 -2],[-2 0 0 -2 -2 -2 -3],[-1 2 2 0 -1 -1 -3],[ 1 1 2 1 0 1 -1],[ 1 2 2 1 -1 0 -3],[ 3 2 3 3 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,1,3,0,2,1,2,2,2,2,2,3,1,1,3,-1,1,3] |
Phi over symmetry |
[-3,-1,-1,1,2,2,-1,1,1,2,3,1,1,1,1,1,1,2,-1,-1,0] |
Phi of -K |
[-3,-1,-1,1,2,2,-1,1,1,2,3,1,1,1,1,1,1,2,-1,-1,0] |
Phi of K* |
[-2,-2,-1,1,1,3,0,-1,1,1,2,-1,1,2,3,1,1,1,-1,-1,1] |
Phi of -K* |
[-3,-1,-1,1,2,2,1,3,3,2,3,1,1,1,2,1,2,2,2,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+11w^3z^2+24w^2z+21w |
Inner characteristic polynomial |
t^6+56t^4+40t^2+1 |
Outer characteristic polynomial |
t^7+76t^5+106t^3+13t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
-576*K1**4 + 1536*K1**3*K2*K3 - 512*K1**3*K3 - 512*K1**2*K2**4 + 1344*K1**2*K2**3 - 1024*K1**2*K2**2*K3**2 - 5648*K1**2*K2**2 + 384*K1**2*K2*K3**2 + 128*K1**2*K2*K3*K5 - 736*K1**2*K2*K4 + 4320*K1**2*K2 - 1536*K1**2*K3**2 - 64*K1**2*K3*K5 - 2476*K1**2 + 256*K1*K2**5*K3 - 512*K1*K2**4*K3 + 4448*K1*K2**3*K3 + 864*K1*K2**2*K3*K4 - 2432*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 736*K1*K2**2*K5 + 128*K1*K2*K3**3 - 384*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 6304*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K5*K6 + 1376*K1*K3*K4 + 64*K1*K4*K5 + 16*K1*K5*K6 + 8*K1*K6*K7 - 128*K2**6 - 1280*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2368*K2**4 + 704*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 + 128*K2**2*K3**2*K4 - 3072*K2**2*K3**2 - 64*K2**2*K3*K7 - 200*K2**2*K4**2 + 1696*K2**2*K4 - 80*K2**2*K5**2 - 48*K2**2*K6**2 - 918*K2**2 + 1328*K2*K3*K5 + 120*K2*K4*K6 + 16*K2*K5*K7 + 16*K2*K6*K8 + 8*K3**2*K6 - 1408*K3**2 - 288*K4**2 - 112*K5**2 - 26*K6**2 - 4*K7**2 - 2*K8**2 + 1984 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {3}, {1, 2}]] |
If K is slice |
False |