Gauss code |
O1O2O3O4U1U3U5O6O5U2U4U6 |
R3 orbit |
{'O1O2O3O4U1U3U5O6O5U2U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U1U3O6O5U6U2U4 |
Gauss code of K* |
O1O2O3U4U3O5O6O4U1U5U2U6 |
Gauss code of -K* |
O1O2O3U4U1O4O5O6U2U5U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 0 2 1 1],[ 3 0 2 1 3 3 2],[ 1 -2 0 0 2 1 1],[ 0 -1 0 0 1 0 1],[-2 -3 -2 -1 0 -2 0],[-1 -3 -1 0 2 0 1],[-1 -2 -1 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -1 -2],[-1 2 1 0 0 -1 -3],[ 0 1 1 0 0 0 -1],[ 1 2 1 1 0 0 -2],[ 3 3 2 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,2,1,2,3,1,1,1,2,0,1,3,0,1,2] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,1,2,2,1,1,1,1,1,0,1,-1,-1,1] |
Phi of -K |
[-3,-1,0,1,1,2,0,2,1,2,2,1,1,1,1,1,0,1,-1,-1,1] |
Phi of K* |
[-2,-1,-1,0,1,3,-1,1,1,1,2,1,1,1,1,0,1,2,1,2,0] |
Phi of -K* |
[-3,-1,0,1,1,2,2,1,2,3,3,0,1,1,2,1,0,1,-1,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+20w^2z+29w |
Inner characteristic polynomial |
t^6+40t^4+16t^2 |
Outer characteristic polynomial |
t^7+56t^5+53t^3+4t |
Flat arrow polynomial |
-2*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 3*K2 + K3 + 2*K4 + 2 |
2-strand cable arrow polynomial |
-16*K1**4 + 32*K1**3*K2*K3 - 800*K1**3*K3 - 288*K1**2*K2**2 + 352*K1**2*K2*K3**2 + 3600*K1**2*K2 - 1552*K1**2*K3**2 - 288*K1**2*K3*K5 - 48*K1**2*K6**2 - 4896*K1**2 + 96*K1*K2**3*K3 - 1504*K1*K2**2*K3 + 32*K1*K2*K3**3 - 192*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 5872*K1*K2*K3 - 64*K1*K2*K5*K6 + 2336*K1*K3*K4 + 216*K1*K4*K5 + 152*K1*K5*K6 + 72*K1*K6*K7 - 72*K2**4 - 32*K2**3*K6 - 960*K2**2*K3**2 - 8*K2**2*K4**2 + 584*K2**2*K4 - 48*K2**2*K6**2 - 3414*K2**2 - 64*K2*K3**2*K4 + 872*K2*K3*K5 + 200*K2*K4*K6 + 16*K2*K5*K7 + 32*K2*K6*K8 - 32*K3**4 + 120*K3**2*K6 - 2680*K3**2 + 8*K3*K4*K7 - 710*K4**2 - 276*K5**2 - 170*K6**2 - 20*K7**2 - 4*K8**2 + 3640 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |