Gauss code |
O1O2O3O4U1U3U5O6O5U4U6U2 |
R3 orbit |
{'O1O2O3O4U1U3U5O6O5U4U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U1O6O5U6U2U4 |
Gauss code of K* |
O1O2O3U4U3O5O4O6U1U6U2U5 |
Gauss code of -K* |
O1O2O3U4U2O4O5O6U3U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 0 1 1 0],[ 3 0 3 1 2 3 1],[-1 -3 0 -1 0 0 0],[ 0 -1 1 0 1 0 1],[-1 -2 0 -1 0 -1 0],[-1 -3 0 0 1 0 0],[ 0 -1 0 -1 0 0 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 0 -3],[-1 0 1 0 0 0 -3],[-1 -1 0 0 0 -1 -2],[-1 0 0 0 0 -1 -3],[ 0 0 0 0 0 -1 -1],[ 0 0 1 1 1 0 -1],[ 3 3 2 3 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,0,3,-1,0,0,0,3,0,0,1,2,0,1,3,1,1,1] |
Phi over symmetry |
[-3,0,0,1,1,1,1,1,2,3,3,-1,0,0,0,1,0,1,-1,0,0] |
Phi of -K |
[-3,0,0,1,1,1,2,2,1,1,2,-1,0,1,0,1,1,1,0,0,-1] |
Phi of K* |
[-1,-1,-1,0,0,3,-1,0,0,1,2,0,1,1,1,0,1,1,1,2,2] |
Phi of -K* |
[-3,0,0,1,1,1,1,1,2,3,3,-1,0,0,0,1,0,1,-1,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
3z^2+23z+35 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+23w^2z+35w |
Inner characteristic polynomial |
t^6+28t^4+40t^2+4 |
Outer characteristic polynomial |
t^7+40t^5+72t^3+10t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 4*K1*K3 - 3*K1 + 6*K2 + K3 + K4 + 6 |
2-strand cable arrow polynomial |
-320*K1**4*K2**2 + 1088*K1**4*K2 - 3072*K1**4 + 768*K1**3*K2*K3 - 1056*K1**3*K3 - 256*K1**2*K2**4 + 896*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 7120*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 672*K1**2*K2*K4 + 10368*K1**2*K2 - 1152*K1**2*K3**2 - 160*K1**2*K3*K5 - 16*K1**2*K4**2 - 32*K1**2*K5**2 - 6912*K1**2 + 1056*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1344*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 608*K1*K2**2*K5 + 128*K1*K2*K3**3 - 512*K1*K2*K3*K4 - 224*K1*K2*K3*K6 + 10056*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K5*K6 - 64*K1*K3**2*K5 + 1720*K1*K3*K4 + 416*K1*K4*K5 + 80*K1*K5*K6 + 8*K1*K6*K7 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1632*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 1472*K2**2*K3**2 - 32*K2**2*K3*K7 - 232*K2**2*K4**2 + 2176*K2**2*K4 - 80*K2**2*K5**2 - 48*K2**2*K6**2 - 5434*K2**2 + 1464*K2*K3*K5 + 232*K2*K4*K6 + 40*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 32*K3**2*K6 - 3052*K3**2 + 8*K3*K4*K7 - 924*K4**2 - 380*K5**2 - 54*K6**2 - 8*K7**2 - 2*K8**2 + 5868 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |