Gauss code |
O1O2O3O4U1U4U2O5O6U5U3U6 |
R3 orbit |
{'O1O2O3O4U1U4U2O5O6U5U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U2U6O5O6U3U1U4 |
Gauss code of K* |
O1O2O3U4U5O4O6O5U1U3U6U2 |
Gauss code of -K* |
O1O2O3U1U3O4O5O6U5U2U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 1 1 -1 2],[ 3 0 2 3 1 0 1],[ 0 -2 0 1 0 0 1],[-1 -3 -1 0 0 0 2],[-1 -1 0 0 0 0 0],[ 1 0 0 0 0 0 1],[-2 -1 -1 -2 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -1 -1 -1],[-1 0 0 0 0 0 -1],[-1 2 0 0 -1 0 -3],[ 0 1 0 1 0 0 -2],[ 1 1 0 0 0 0 0],[ 3 1 1 3 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,2,1,1,1,0,0,0,1,1,0,3,0,2,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,1,3,1,0,0,0,1,0,1,1,0,0,2] |
Phi of -K |
[-3,-1,0,1,1,2,2,1,1,3,4,1,2,2,2,0,1,1,0,-1,1] |
Phi of K* |
[-2,-1,-1,0,1,3,-1,1,1,2,4,0,0,2,1,1,2,3,1,1,2] |
Phi of -K* |
[-3,-1,0,1,1,2,0,2,1,3,1,0,0,0,1,0,1,1,0,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
2z^2+21z+35 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+21w^2z+35w |
Inner characteristic polynomial |
t^6+22t^4+25t^2+1 |
Outer characteristic polynomial |
t^7+38t^5+74t^3+6t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 10*K1**2 - 6*K1*K2 - 4*K1*K3 + 5*K2 + 2*K3 + K4 + 5 |
2-strand cable arrow polynomial |
-192*K1**6 - 256*K1**4*K2**2 + 928*K1**4*K2 - 2944*K1**4 + 896*K1**3*K2*K3 + 32*K1**3*K3*K4 - 736*K1**3*K3 - 256*K1**2*K2**4 + 352*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 96*K1**2*K2**2*K4 - 4704*K1**2*K2**2 + 160*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 8008*K1**2*K2 - 1856*K1**2*K3**2 - 128*K1**2*K3*K5 - 240*K1**2*K4**2 - 5588*K1**2 + 992*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 448*K1*K2**2*K5 + 288*K1*K2*K3**3 - 384*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 7952*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 - 32*K1*K3**2*K5 + 2792*K1*K3*K4 + 584*K1*K4*K5 + 56*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 792*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 32*K2**3*K6 - 1104*K2**2*K3**2 - 32*K2**2*K3*K7 - 216*K2**2*K4**2 - 32*K2**2*K4*K8 + 1440*K2**2*K4 - 16*K2**2*K5**2 - 16*K2**2*K6**2 - 4580*K2**2 - 128*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 984*K2*K3*K5 + 288*K2*K4*K6 + 64*K2*K5*K7 + 16*K2*K6*K8 - 160*K3**4 + 144*K3**2*K6 - 2852*K3**2 + 48*K3*K4*K7 - 1250*K4**2 - 368*K5**2 - 100*K6**2 - 40*K7**2 - 2*K8**2 + 5178 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{6}, {4, 5}, {1, 3}, {2}]] |
If K is slice |
False |