Gauss code |
O1O2O3O4U1U4U2O5O6U5U6U3 |
R3 orbit |
{'O1O2O3O4U1U4U2O5O6U5U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U5U6O5O6U3U1U4 |
Gauss code of K* |
O1O2O3U4U5O4O5O6U1U3U6U2 |
Gauss code of -K* |
O1O2O3U2U3O4O5O6U5U1U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 2 1 -1 1],[ 3 0 2 3 1 0 0],[ 0 -2 0 1 0 0 0],[-2 -3 -1 0 0 -1 1],[-1 -1 0 0 0 0 0],[ 1 0 0 1 0 0 1],[-1 0 0 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 1 0 -1 -1 -3],[-1 -1 0 0 0 -1 0],[-1 0 0 0 0 0 -1],[ 0 1 0 0 0 0 -2],[ 1 1 1 0 0 0 0],[ 3 3 0 1 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,-1,0,1,1,3,0,0,1,0,0,0,1,0,2,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,0,1,3,0,1,0,1,0,0,1,0,-1,0] |
Phi of -K |
[-3,-1,0,1,1,2,2,1,3,4,2,1,2,1,2,1,1,1,0,1,2] |
Phi of K* |
[-2,-1,-1,0,1,3,1,2,1,2,2,0,1,2,3,1,1,4,1,1,2] |
Phi of -K* |
[-3,-1,0,1,1,2,0,2,0,1,3,0,1,0,1,0,0,1,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2+25w^2z+27w |
Inner characteristic polynomial |
t^6+18t^4+26t^2+1 |
Outer characteristic polynomial |
t^7+34t^5+61t^3+10t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 2*K1**2 - 6*K1*K2 - 3*K1 - 2*K2**2 + K2 + K3 + 4 |
2-strand cable arrow polynomial |
-256*K1**6 - 576*K1**4*K2**2 + 3008*K1**4*K2 - 5520*K1**4 - 384*K1**3*K2**2*K3 + 1472*K1**3*K2*K3 + 128*K1**3*K3*K4 - 1184*K1**3*K3 + 384*K1**2*K2**5 - 1664*K1**2*K2**4 - 384*K1**2*K2**3*K4 + 4288*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 1152*K1**2*K2**2*K4 - 12096*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 96*K1**2*K2*K4**2 - 1664*K1**2*K2*K4 + 9744*K1**2*K2 - 1552*K1**2*K3**2 - 64*K1**2*K3*K5 - 416*K1**2*K4**2 - 1948*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 2464*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 2048*K1*K2**2*K3 - 576*K1*K2**2*K5 + 192*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 640*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8032*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K3**2*K5 + 1416*K1*K3*K4 + 224*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1088*K2**6 - 192*K2**4*K3**2 - 192*K2**4*K4**2 + 1472*K2**4*K4 - 3432*K2**4 + 32*K2**3*K3*K5 - 160*K2**3*K6 + 192*K2**2*K3**2*K4 - 1264*K2**2*K3**2 + 64*K2**2*K4**3 - 632*K2**2*K4**2 + 2256*K2**2*K4 - 974*K2**2 - 32*K2*K3*K4*K5 + 528*K2*K3*K5 + 168*K2*K4*K6 - 64*K3**4 - 48*K3**2*K4**2 + 16*K3**2*K6 - 1016*K3**2 + 8*K3*K4*K7 - 8*K4**4 - 334*K4**2 - 12*K5**2 - 2*K6**2 + 2732 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |