Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1161

Min(phi) over symmetries of the knot is: [-3,-1,1,1,1,1,0,0,1,2,3,1,0,0,1,0,0,-1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1161', '7.24433']
Arrow polynomial of the knot is: 4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + K4 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.115', '6.407', '6.413', '6.448', '6.844', '6.879', '6.888', '6.926', '6.934', '6.1140', '6.1143', '6.1161', '6.1177']
Outer characteristic polynomial of the knot is: t^7+31t^5+56t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1161', '6.1888']
2-strand cable arrow polynomial of the knot is: -2624*K1**4 + 1408*K1**3*K2*K3 + 128*K1**3*K3*K4 - 672*K1**3*K3 + 384*K1**2*K2**2*K4 - 5392*K1**2*K2**2 - 1216*K1**2*K2*K4 + 6144*K1**2*K2 - 1280*K1**2*K3**2 - 32*K1**2*K3*K5 - 352*K1**2*K4**2 - 2124*K1**2 + 1440*K1*K2**3*K3 + 320*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 832*K1*K2**2*K5 - 512*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6208*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1760*K1*K3*K4 + 392*K1*K4*K5 + 24*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**4*K4**2 + 480*K2**4*K4 - 1792*K2**4 + 64*K2**3*K4*K6 - 224*K2**3*K6 - 1280*K2**2*K3**2 - 552*K2**2*K4**2 - 32*K2**2*K4*K8 + 1824*K2**2*K4 - 16*K2**2*K5**2 - 16*K2**2*K6**2 - 1822*K2**2 - 96*K2*K3**2*K4 + 920*K2*K3*K5 + 384*K2*K4*K6 + 16*K2*K5*K7 + 16*K2*K6*K8 + 24*K3**2*K6 - 1464*K3**2 - 648*K4**2 - 160*K5**2 - 58*K6**2 - 4*K7**2 - 2*K8**2 + 2408
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1161']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.52', 'vk6.105', 'vk6.202', 'vk6.253', 'vk6.380', 'vk6.793', 'vk6.800', 'vk6.1257', 'vk6.1348', 'vk6.1397', 'vk6.1537', 'vk6.2018', 'vk6.2405', 'vk6.2428', 'vk6.2677', 'vk6.2976', 'vk6.10454', 'vk6.10469', 'vk6.10673', 'vk6.10862', 'vk6.14653', 'vk6.16262', 'vk6.19170', 'vk6.25738', 'vk6.25902', 'vk6.30149', 'vk6.30356', 'vk6.30485', 'vk6.33415', 'vk6.33571', 'vk6.53783', 'vk6.63417']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U4U3O5O6U5U6U2
R3 orbit {'O1O2O3O4U1U4U3O5O6U5U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U5U6O5O6U2U1U4
Gauss code of K* O1O2O3U4U5O4O5O6U1U6U3U2
Gauss code of -K* O1O2O3U2U3O4O5O6U5U4U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 1 1 -1 1],[ 3 0 3 2 1 0 0],[-1 -3 0 0 0 -1 1],[-1 -2 0 0 0 0 0],[-1 -1 0 0 0 0 0],[ 1 0 1 0 0 0 1],[-1 0 -1 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 1 -1 -3],[-1 0 1 0 0 -1 -3],[-1 -1 0 0 0 -1 0],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 0 -2],[ 1 1 1 0 0 0 0],[ 3 3 0 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,-1,1,3,-1,0,0,1,3,0,0,1,0,0,0,1,0,2,0]
Phi over symmetry [-3,-1,1,1,1,1,0,0,1,2,3,1,0,0,1,0,0,-1,0,0,0]
Phi of -K [-3,-1,1,1,1,1,2,1,2,3,4,1,2,2,1,0,0,-1,0,0,0]
Phi of K* [-1,-1,-1,-1,1,3,-1,0,0,1,4,0,0,1,1,0,2,2,2,3,2]
Phi of -K* [-3,-1,1,1,1,1,0,0,1,2,3,1,0,0,1,0,0,-1,0,0,0]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 7z^2+24z+21
Enhanced Jones-Krushkal polynomial -4w^4z^2+11w^3z^2+24w^2z+21w
Inner characteristic polynomial t^6+17t^4+24t^2
Outer characteristic polynomial t^7+31t^5+56t^3+8t
Flat arrow polynomial 4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + K4 + 2
2-strand cable arrow polynomial -2624*K1**4 + 1408*K1**3*K2*K3 + 128*K1**3*K3*K4 - 672*K1**3*K3 + 384*K1**2*K2**2*K4 - 5392*K1**2*K2**2 - 1216*K1**2*K2*K4 + 6144*K1**2*K2 - 1280*K1**2*K3**2 - 32*K1**2*K3*K5 - 352*K1**2*K4**2 - 2124*K1**2 + 1440*K1*K2**3*K3 + 320*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 832*K1*K2**2*K5 - 512*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6208*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1760*K1*K3*K4 + 392*K1*K4*K5 + 24*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**4*K4**2 + 480*K2**4*K4 - 1792*K2**4 + 64*K2**3*K4*K6 - 224*K2**3*K6 - 1280*K2**2*K3**2 - 552*K2**2*K4**2 - 32*K2**2*K4*K8 + 1824*K2**2*K4 - 16*K2**2*K5**2 - 16*K2**2*K6**2 - 1822*K2**2 - 96*K2*K3**2*K4 + 920*K2*K3*K5 + 384*K2*K4*K6 + 16*K2*K5*K7 + 16*K2*K6*K8 + 24*K3**2*K6 - 1464*K3**2 - 648*K4**2 - 160*K5**2 - 58*K6**2 - 4*K7**2 - 2*K8**2 + 2408
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact