Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1167

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,2,3,1,1,1,1,0,1,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1167']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+54t^5+81t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1167']
2-strand cable arrow polynomial of the knot is: -1440*K1**2*K2**2 - 32*K1**2*K2*K4 + 2536*K1**2*K2 - 2496*K1**2 + 320*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 384*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 3144*K1*K2*K3 + 432*K1*K3*K4 + 200*K1*K4*K5 - 984*K2**4 - 704*K2**2*K3**2 - 72*K2**2*K4**2 + 1552*K2**2*K4 - 2174*K2**2 + 944*K2*K3*K5 + 16*K2*K4*K6 - 1208*K3**2 - 490*K4**2 - 256*K5**2 - 2*K6**2 + 2152
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1167']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16370', 'vk6.16411', 'vk6.18113', 'vk6.18449', 'vk6.22704', 'vk6.22805', 'vk6.24566', 'vk6.24983', 'vk6.34677', 'vk6.34756', 'vk6.36703', 'vk6.37125', 'vk6.42330', 'vk6.42374', 'vk6.43979', 'vk6.44293', 'vk6.54629', 'vk6.54654', 'vk6.55925', 'vk6.56217', 'vk6.59108', 'vk6.59175', 'vk6.60455', 'vk6.60816', 'vk6.64655', 'vk6.64703', 'vk6.65573', 'vk6.65883', 'vk6.68005', 'vk6.68031', 'vk6.68653', 'vk6.68866']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5U2O5O6U4U3U6
R3 orbit {'O1O2O3O4U1U5U2O5O6U4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U2U1O5O6U3U6U4
Gauss code of K* O1O2O3U2U4O5O6O4U1U3U6U5
Gauss code of -K* O1O2O3U1U4O5O4O6U3U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 1 1 -1 2],[ 3 0 1 3 2 2 2],[ 0 -1 0 1 0 0 2],[-1 -3 -1 0 0 -1 2],[-1 -2 0 0 0 -1 1],[ 1 -2 0 1 1 0 2],[-2 -2 -2 -2 -1 -2 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 -1 -2 -2 -2 -2],[-1 1 0 0 0 -1 -2],[-1 2 0 0 -1 -1 -3],[ 0 2 0 1 0 0 -1],[ 1 2 1 1 0 0 -2],[ 3 2 2 3 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,1,2,2,2,2,0,0,1,2,1,1,3,0,1,2]
Phi over symmetry [-3,-1,0,1,1,2,0,2,1,2,3,1,1,1,1,0,1,0,0,-1,0]
Phi of -K [-3,-1,0,1,1,2,0,2,1,2,3,1,1,1,1,0,1,0,0,-1,0]
Phi of K* [-2,-1,-1,0,1,3,-1,0,0,1,3,0,0,1,1,1,1,2,1,2,0]
Phi of -K* [-3,-1,0,1,1,2,2,1,2,3,2,0,1,1,2,0,1,2,0,1,2]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-6w^3z+25w^2z+15w
Inner characteristic polynomial t^6+38t^4+32t^2+1
Outer characteristic polynomial t^7+54t^5+81t^3+8t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -1440*K1**2*K2**2 - 32*K1**2*K2*K4 + 2536*K1**2*K2 - 2496*K1**2 + 320*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 384*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 3144*K1*K2*K3 + 432*K1*K3*K4 + 200*K1*K4*K5 - 984*K2**4 - 704*K2**2*K3**2 - 72*K2**2*K4**2 + 1552*K2**2*K4 - 2174*K2**2 + 944*K2*K3*K5 + 16*K2*K4*K6 - 1208*K3**2 - 490*K4**2 - 256*K5**2 - 2*K6**2 + 2152
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]]
If K is slice False
Contact