Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1168

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,0,3,2,3,0,1,1,1,1,1,1,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1168']
Arrow polynomial of the knot is: -4*K1**2 - 6*K1*K2 + 3*K1 + 2*K2 + 3*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.586', '6.590', '6.958', '6.987', '6.991', '6.993', '6.999', '6.1054', '6.1065', '6.1096', '6.1168', '6.1182']
Outer characteristic polynomial of the knot is: t^7+62t^5+34t^3+2t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1168']
2-strand cable arrow polynomial of the knot is: 608*K1**4*K2 - 3120*K1**4 + 32*K1**3*K2*K3 + 64*K1**3*K3*K4 - 800*K1**3*K3 + 32*K1**3*K4*K5 - 1920*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 448*K1**2*K2*K4 + 7160*K1**2*K2 - 1584*K1**2*K3**2 - 448*K1**2*K3*K5 - 624*K1**2*K4**2 - 64*K1**2*K4*K6 - 64*K1**2*K5**2 - 6056*K1**2 + 96*K1*K2**3*K3 - 672*K1*K2**2*K3 - 96*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 6368*K1*K2*K3 + 3816*K1*K3*K4 + 1200*K1*K4*K5 + 64*K1*K5*K6 - 208*K2**4 - 320*K2**2*K3**2 - 120*K2**2*K4**2 + 1200*K2**2*K4 - 4722*K2**2 + 664*K2*K3*K5 + 128*K2*K4*K6 - 3188*K3**2 - 1796*K4**2 - 508*K5**2 - 38*K6**2 + 5554
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1168']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11021', 'vk6.11099', 'vk6.12189', 'vk6.12296', 'vk6.18194', 'vk6.18529', 'vk6.24652', 'vk6.25078', 'vk6.30596', 'vk6.30691', 'vk6.31864', 'vk6.31910', 'vk6.36788', 'vk6.37238', 'vk6.44031', 'vk6.44371', 'vk6.51820', 'vk6.51887', 'vk6.52690', 'vk6.52784', 'vk6.55989', 'vk6.56261', 'vk6.60523', 'vk6.60865', 'vk6.63506', 'vk6.63550', 'vk6.63986', 'vk6.64030', 'vk6.65654', 'vk6.65933', 'vk6.68701', 'vk6.68910']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5U3O5O6U2U4U6
R3 orbit {'O1O2O3O4U1U5U3O5O6U2U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U3O5O6U2U6U4
Gauss code of K* O1O2O3U2U4O5O6O4U1U5U3U6
Gauss code of -K* O1O2O3U1U4O5O4O6U2U5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 1 2 -1 2],[ 3 0 2 1 3 2 2],[ 1 -2 0 1 2 0 2],[-1 -1 -1 0 0 -1 1],[-2 -3 -2 0 0 -2 1],[ 1 -2 0 1 2 0 2],[-2 -2 -2 -1 -1 -2 0]]
Primitive based matrix [[ 0 2 2 1 -1 -1 -3],[-2 0 1 0 -2 -2 -3],[-2 -1 0 -1 -2 -2 -2],[-1 0 1 0 -1 -1 -1],[ 1 2 2 1 0 0 -2],[ 1 2 2 1 0 0 -2],[ 3 3 2 1 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,1,3,-1,0,2,2,3,1,2,2,2,1,1,1,0,2,2]
Phi over symmetry [-3,-1,-1,1,2,2,0,0,3,2,3,0,1,1,1,1,1,1,1,0,-1]
Phi of -K [-3,-1,-1,1,2,2,0,0,3,2,3,0,1,1,1,1,1,1,1,0,-1]
Phi of K* [-2,-2,-1,1,1,3,-1,0,1,1,3,1,1,1,2,1,1,3,0,0,0]
Phi of -K* [-3,-1,-1,1,2,2,2,2,1,2,3,0,1,2,2,1,2,2,1,0,-1]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+42t^4+16t^2
Outer characteristic polynomial t^7+62t^5+34t^3+2t
Flat arrow polynomial -4*K1**2 - 6*K1*K2 + 3*K1 + 2*K2 + 3*K3 + 3
2-strand cable arrow polynomial 608*K1**4*K2 - 3120*K1**4 + 32*K1**3*K2*K3 + 64*K1**3*K3*K4 - 800*K1**3*K3 + 32*K1**3*K4*K5 - 1920*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 448*K1**2*K2*K4 + 7160*K1**2*K2 - 1584*K1**2*K3**2 - 448*K1**2*K3*K5 - 624*K1**2*K4**2 - 64*K1**2*K4*K6 - 64*K1**2*K5**2 - 6056*K1**2 + 96*K1*K2**3*K3 - 672*K1*K2**2*K3 - 96*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 6368*K1*K2*K3 + 3816*K1*K3*K4 + 1200*K1*K4*K5 + 64*K1*K5*K6 - 208*K2**4 - 320*K2**2*K3**2 - 120*K2**2*K4**2 + 1200*K2**2*K4 - 4722*K2**2 + 664*K2*K3*K5 + 128*K2*K4*K6 - 3188*K3**2 - 1796*K4**2 - 508*K5**2 - 38*K6**2 + 5554
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact