Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,0,1,2,2,3,1,1,1,1,0,0,1,1,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1179'] |
Arrow polynomial of the knot is: -6*K1*K2 + 3*K1 - 4*K2**2 + 3*K3 + 2*K4 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.881', '6.967', '6.1179'] |
Outer characteristic polynomial of the knot is: t^7+43t^5+46t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1179'] |
2-strand cable arrow polynomial of the knot is: -1392*K1**4 + 736*K1**3*K2*K3 + 256*K1**3*K3*K4 - 480*K1**3*K3 - 1824*K1**2*K2**2 - 928*K1**2*K2*K4 + 3880*K1**2*K2 - 2144*K1**2*K3**2 - 256*K1**2*K3*K5 - 272*K1**2*K4**2 - 3900*K1**2 + 128*K1*K2**3*K3 - 352*K1*K2**2*K3 - 64*K1*K2**2*K5 + 128*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 256*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 5552*K1*K2*K3 - 64*K1*K2*K4*K5 - 64*K1*K3**2*K5 - 64*K1*K3*K4*K6 + 3456*K1*K3*K4 + 536*K1*K4*K5 + 64*K1*K5*K6 + 16*K1*K6*K7 - 64*K2**4 - 224*K2**2*K3**2 - 120*K2**2*K4**2 + 688*K2**2*K4 - 2910*K2**2 - 32*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 416*K2*K3*K5 + 232*K2*K4*K6 + 8*K2*K5*K7 - 144*K3**4 - 112*K3**2*K4**2 + 160*K3**2*K6 - 2596*K3**2 + 184*K3*K4*K7 - 16*K4**4 + 32*K4**2*K8 - 1404*K4**2 - 260*K5**2 - 122*K6**2 - 60*K7**2 - 12*K8**2 + 3694 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1179'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4648', 'vk6.4929', 'vk6.6088', 'vk6.6583', 'vk6.8109', 'vk6.8507', 'vk6.9495', 'vk6.9856', 'vk6.20625', 'vk6.22054', 'vk6.28111', 'vk6.29554', 'vk6.39527', 'vk6.41752', 'vk6.46138', 'vk6.47782', 'vk6.48688', 'vk6.48889', 'vk6.49438', 'vk6.49661', 'vk6.50702', 'vk6.50901', 'vk6.51189', 'vk6.51392', 'vk6.57509', 'vk6.58699', 'vk6.62205', 'vk6.63153', 'vk6.67019', 'vk6.67894', 'vk6.69648', 'vk6.70331'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1U5U2O6O5U6U4U3 |
R3 orbit | {'O1O2O3O4U1U5U2O6O5U6U4U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U2U1U5O6O5U3U6U4 |
Gauss code of K* | O1O2O3U4U2O4O5O6U1U3U6U5 |
Gauss code of -K* | O1O2O3U4U3O5O4O6U2U1U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 0 2 2 0 -1],[ 3 0 1 3 2 2 0],[ 0 -1 0 1 0 0 -1],[-2 -3 -1 0 0 -1 -1],[-2 -2 0 0 0 -1 -1],[ 0 -2 0 1 1 0 -1],[ 1 0 1 1 1 1 0]] |
Primitive based matrix | [[ 0 2 2 0 0 -1 -3],[-2 0 0 0 -1 -1 -2],[-2 0 0 -1 -1 -1 -3],[ 0 0 1 0 0 -1 -1],[ 0 1 1 0 0 -1 -2],[ 1 1 1 1 1 0 0],[ 3 2 3 1 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,0,0,1,3,0,0,1,1,2,1,1,1,3,0,1,1,1,2,0] |
Phi over symmetry | [-3,-1,0,0,2,2,0,1,2,2,3,1,1,1,1,0,0,1,1,1,0] |
Phi of -K | [-3,-1,0,0,2,2,2,1,2,2,3,0,0,2,2,0,1,1,1,2,0] |
Phi of K* | [-2,-2,0,0,1,3,0,1,1,2,2,1,2,2,3,0,0,1,0,2,2] |
Phi of -K* | [-3,-1,0,0,2,2,0,1,2,2,3,1,1,1,1,0,0,1,1,1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+24w^2z+29w |
Inner characteristic polynomial | t^6+25t^4+18t^2+1 |
Outer characteristic polynomial | t^7+43t^5+46t^3+6t |
Flat arrow polynomial | -6*K1*K2 + 3*K1 - 4*K2**2 + 3*K3 + 2*K4 + 3 |
2-strand cable arrow polynomial | -1392*K1**4 + 736*K1**3*K2*K3 + 256*K1**3*K3*K4 - 480*K1**3*K3 - 1824*K1**2*K2**2 - 928*K1**2*K2*K4 + 3880*K1**2*K2 - 2144*K1**2*K3**2 - 256*K1**2*K3*K5 - 272*K1**2*K4**2 - 3900*K1**2 + 128*K1*K2**3*K3 - 352*K1*K2**2*K3 - 64*K1*K2**2*K5 + 128*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 256*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 5552*K1*K2*K3 - 64*K1*K2*K4*K5 - 64*K1*K3**2*K5 - 64*K1*K3*K4*K6 + 3456*K1*K3*K4 + 536*K1*K4*K5 + 64*K1*K5*K6 + 16*K1*K6*K7 - 64*K2**4 - 224*K2**2*K3**2 - 120*K2**2*K4**2 + 688*K2**2*K4 - 2910*K2**2 - 32*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 416*K2*K3*K5 + 232*K2*K4*K6 + 8*K2*K5*K7 - 144*K3**4 - 112*K3**2*K4**2 + 160*K3**2*K6 - 2596*K3**2 + 184*K3*K4*K7 - 16*K4**4 + 32*K4**2*K8 - 1404*K4**2 - 260*K5**2 - 122*K6**2 - 60*K7**2 - 12*K8**2 + 3694 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |