Gauss code |
O1O2O3O4O5O6U3U5U6U1U2U4 |
R3 orbit |
{'O1O2O3O4O5O6U3U5U6U1U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3O4O5O6U4U5U1U6U2U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U5U1U6U2U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 -3 3 0 2],[ 2 0 1 -2 3 0 2],[ 0 -1 0 -2 2 0 2],[ 3 2 2 0 3 1 2],[-3 -3 -2 -3 0 -1 1],[ 0 0 0 -1 1 0 1],[-2 -2 -2 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 2 0 0 -2 -3],[-3 0 1 -1 -2 -3 -3],[-2 -1 0 -1 -2 -2 -2],[ 0 1 1 0 0 0 -1],[ 0 2 2 0 0 -1 -2],[ 2 3 2 0 1 0 -2],[ 3 3 2 1 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,0,2,3,-1,1,2,3,3,1,2,2,2,0,0,1,1,2,2] |
Phi over symmetry |
[-3,-2,0,0,2,3,-1,1,2,3,3,1,2,2,2,0,0,1,1,2,2] |
Phi of -K |
[-3,-2,0,0,2,3,-1,1,2,3,3,1,2,2,2,0,0,1,1,2,2] |
Phi of K* |
[-3,-2,0,0,2,3,2,1,2,2,3,0,1,2,3,0,1,1,2,2,-1] |
Phi of -K* |
[-3,-2,0,0,2,3,2,1,2,2,3,0,1,2,3,0,1,1,2,2,-1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+22w^2z+25w |
Inner characteristic polynomial |
t^6+47t^4+15t^2 |
Outer characteristic polynomial |
t^7+73t^5+69t^3+4t |
Flat arrow polynomial |
16*K1**3 + 4*K1**2*K2 - 8*K1**2 - 8*K1*K2 - 4*K1*K3 - 8*K1 + 4*K2 + K4 + 4 |
2-strand cable arrow polynomial |
-544*K1**4 + 256*K1**3*K2*K3 - 384*K1**3*K3 - 128*K1**2*K2**4 + 1088*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 5728*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 5872*K1**2*K2 - 544*K1**2*K3**2 - 128*K1**2*K3*K5 - 32*K1**2*K5**2 - 4136*K1**2 + 2816*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 1600*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 384*K1*K2**2*K5 + 128*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6208*K1*K2*K3 - 64*K1*K2*K5*K6 + 912*K1*K3*K4 + 192*K1*K4*K5 + 48*K1*K5*K6 - 256*K2**6 - 512*K2**4*K3**2 - 32*K2**4*K4**2 + 320*K2**4*K4 - 3120*K2**4 + 320*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 + 128*K2**2*K3**2*K4 - 2112*K2**2*K3**2 - 64*K2**2*K3*K7 - 256*K2**2*K4**2 + 2208*K2**2*K4 - 128*K2**2*K5**2 - 48*K2**2*K6**2 - 1568*K2**2 + 1056*K2*K3*K5 + 144*K2*K4*K6 + 64*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 32*K3**2*K6 - 1600*K3**2 - 440*K4**2 - 168*K5**2 - 32*K6**2 - 2*K8**2 + 3064 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}]] |
If K is slice |
False |