| Gauss code |
O1O2O3O4U1U5U3O6O5U6U4U2 |
| R3 orbit |
{'O1O2O3O4U1U5U3O6O5U6U4U2'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U3U1U5O6O5U2U6U4 |
| Gauss code of K* |
O1O2O3U4U2O4O5O6U1U6U3U5 |
| Gauss code of -K* |
O1O2O3U4U3O5O4O6U2U5U1U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 1 1 2 0 -1],[ 3 0 3 1 2 2 0],[-1 -3 0 0 1 -1 -1],[-1 -1 0 0 0 -1 -1],[-2 -2 -1 0 0 -1 -1],[ 0 -2 1 1 1 0 -1],[ 1 0 1 1 1 1 0]] |
| Primitive based matrix |
[[ 0 2 1 0 -3],[-2 0 0 -1 -2],[-1 0 0 -1 -1],[ 0 1 1 0 -2],[ 3 2 1 2 0]] |
| If based matrix primitive |
False |
| Phi of primitive based matrix |
[-2,-1,0,3,0,1,2,1,1,2] |
| Phi over symmetry |
[-3,0,1,2,1,3,3,0,1,1] |
| Phi of -K |
[-3,0,1,2,1,3,3,0,1,1] |
| Phi of K* |
[-2,-1,0,3,1,1,3,0,3,1] |
| Phi of -K* |
[-3,0,1,2,2,1,2,1,1,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-t^2-t |
| Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
| Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
| Inner characteristic polynomial |
t^4+11t^2+1 |
| Outer characteristic polynomial |
t^5+25t^3+4t |
| Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 10*K1**2 - 10*K1*K2 - 4*K1*K3 - K1 + 5*K2 + 3*K3 + K4 + 5 |
| 2-strand cable arrow polynomial |
-448*K1**6 + 256*K1**4*K2**3 - 1024*K1**4*K2**2 + 3072*K1**4*K2 - 4672*K1**4 - 256*K1**3*K2**2*K3 + 992*K1**3*K2*K3 + 32*K1**3*K3*K4 - 416*K1**3*K3 + 32*K1**3*K4*K5 - 384*K1**2*K2**4 + 1280*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6816*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 448*K1**2*K2*K4 + 9336*K1**2*K2 - 928*K1**2*K3**2 - 160*K1**2*K3*K5 - 240*K1**2*K4**2 - 32*K1**2*K4*K6 - 32*K1**2*K5**2 - 5420*K1**2 + 768*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1696*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 288*K1*K2**2*K5 - 640*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7872*K1*K2*K3 - 160*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 2512*K1*K3*K4 + 960*K1*K4*K5 + 112*K1*K5*K6 + 8*K1*K6*K7 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 224*K2**4*K4 - 1496*K2**4 + 160*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 880*K2**2*K3**2 - 64*K2**2*K3*K7 - 344*K2**2*K4**2 - 32*K2**2*K4*K8 + 2408*K2**2*K4 - 80*K2**2*K5**2 - 16*K2**2*K6**2 - 5230*K2**2 - 128*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 1224*K2*K3*K5 + 368*K2*K4*K6 + 88*K2*K5*K7 + 16*K2*K6*K8 + 48*K3**2*K6 - 3012*K3**2 + 16*K3*K4*K7 - 1646*K4**2 - 624*K5**2 - 98*K6**2 - 16*K7**2 - 2*K8**2 + 5942 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}]] |
| If K is slice |
False |