| Gauss code |
O1O2O3O4U1U5U4O6O5U2U6U3 |
| R3 orbit |
{'O1O2O3O4U1U5U4O6O5U2U6U3'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U2U5U3O6O5U1U6U4 |
| Gauss code of K* |
O1O2O3U4U2O5O4O6U1U5U6U3 |
| Gauss code of -K* |
O1O2O3U4U2O5O4O6U5U1U3U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
2 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 -1 2 2 0 0],[ 3 0 2 3 1 2 1],[ 1 -2 0 2 1 0 0],[-2 -3 -2 0 1 -2 -1],[-2 -1 -1 -1 0 -2 -1],[ 0 -2 0 2 2 0 0],[ 0 -1 0 1 1 0 0]] |
| Primitive based matrix |
[[ 0 2 2 0 0 -1 -3],[-2 0 1 -1 -2 -2 -3],[-2 -1 0 -1 -2 -1 -1],[ 0 1 1 0 0 0 -1],[ 0 2 2 0 0 0 -2],[ 1 2 1 0 0 0 -2],[ 3 3 1 1 2 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-2,0,0,1,3,-1,1,2,2,3,1,2,1,1,0,0,1,0,2,2] |
| Phi over symmetry |
[-3,-1,0,0,2,2,0,1,2,2,4,1,1,1,2,0,0,0,1,1,-1] |
| Phi of -K |
[-3,-1,0,0,2,2,0,1,2,2,4,1,1,1,2,0,0,0,1,1,-1] |
| Phi of K* |
[-2,-2,0,0,1,3,-1,0,1,2,4,0,1,1,2,0,1,1,1,2,0] |
| Phi of -K* |
[-3,-1,0,0,2,2,2,1,2,1,3,0,0,1,2,0,1,1,2,2,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-2t^2+t |
| Normalized Jones-Krushkal polynomial |
7z+15 |
| Enhanced Jones-Krushkal polynomial |
-6w^3z+13w^2z+15w |
| Inner characteristic polynomial |
t^6+35t^4+16t^2 |
| Outer characteristic polynomial |
t^7+53t^5+48t^3 |
| Flat arrow polynomial |
-4*K1**2 - 6*K1*K2 + 3*K1 + 2*K2 + 3*K3 + 3 |
| 2-strand cable arrow polynomial |
-48*K1**4 + 128*K1**3*K2*K3 - 64*K1**2*K2**2*K3**2 - 928*K1**2*K2**2 + 496*K1**2*K2 - 368*K1**2*K3**2 - 32*K1**2*K5**2 - 1212*K1**2 + 320*K1*K2**3*K3 + 96*K1*K2*K3**3 + 2608*K1*K2*K3 + 312*K1*K3*K4 + 112*K1*K4*K5 + 80*K1*K5*K6 - 192*K2**4 - 560*K2**2*K3**2 - 24*K2**2*K4**2 + 72*K2**2*K4 - 1038*K2**2 + 440*K2*K3*K5 + 40*K2*K4*K6 - 64*K3**4 + 24*K3**2*K6 - 1136*K3**2 - 164*K4**2 - 204*K5**2 - 50*K6**2 + 1354 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{4, 6}, {3, 5}, {1, 2}]] |
| If K is slice |
False |