Gauss code |
O1O2O3O4U2U1U4O5O6U3U5U6 |
R3 orbit |
{'O1O2O3O4U2U1U4O5O6U3U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U2O5O6U1U4U3 |
Gauss code of K* |
O1O2O3U4U5O6O4O5U2U1U6U3 |
Gauss code of -K* |
O1O2O3U1U2O4O5O6U4U3U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 0 2 0 2],[ 2 0 0 3 2 1 1],[ 2 0 0 2 1 1 1],[ 0 -3 -2 0 0 1 2],[-2 -2 -1 0 0 0 0],[ 0 -1 -1 -1 0 0 1],[-2 -1 -1 -2 0 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -2 -2],[-2 0 0 0 0 -1 -2],[-2 0 0 -1 -2 -1 -1],[ 0 0 1 0 -1 -1 -1],[ 0 0 2 1 0 -2 -3],[ 2 1 1 1 2 0 0],[ 2 2 1 1 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,2,2,0,0,0,1,2,1,2,1,1,1,1,1,2,3,0] |
Phi over symmetry |
[-2,-2,0,0,2,2,0,-1,1,2,3,0,1,3,3,-1,2,0,2,1,0] |
Phi of -K |
[-2,-2,0,0,2,2,0,-1,1,2,3,0,1,3,3,-1,2,0,2,1,0] |
Phi of K* |
[-2,-2,0,0,2,2,0,0,1,3,3,2,2,2,3,1,-1,0,1,1,0] |
Phi of -K* |
[-2,-2,0,0,2,2,0,1,2,1,1,1,3,1,2,-1,1,0,2,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+14z+9 |
Enhanced Jones-Krushkal polynomial |
-6w^4z^2+11w^3z^2+14w^2z+9 |
Inner characteristic polynomial |
t^6+28t^4+40t^2 |
Outer characteristic polynomial |
t^7+44t^5+152t^3 |
Flat arrow polynomial |
-8*K1**4 + 8*K1**2*K2 - 2*K2**2 + 3 |
2-strand cable arrow polynomial |
-128*K2**8 + 256*K2**6*K4 - 1728*K2**6 - 192*K2**4*K4**2 + 1952*K2**4*K4 - 2560*K2**4 + 64*K2**2*K4**3 - 992*K2**2*K4**2 + 2728*K2**2*K4 + 316*K2**2 + 344*K2*K4*K6 - 8*K4**4 - 728*K4**2 - 60*K6**2 + 734 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {1, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {4, 5}, {1, 3}, {2}]] |
If K is slice |
False |