Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,-1,2,1,2,3,2,1,2,2,1,1,1,0,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.119'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 2*K1*K2 - 4*K1*K3 - 2*K1 + 3*K2 + K4 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.119', '6.852'] |
Outer characteristic polynomial of the knot is: t^7+69t^5+82t^3+13t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.119'] |
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 448*K1**4*K2 - 1216*K1**4 + 1024*K1**3*K2*K3 - 256*K1**3*K3 - 256*K1**2*K2**4 + 576*K1**2*K2**3 - 576*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 5744*K1**2*K2**2 + 160*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 544*K1**2*K2*K4 + 5240*K1**2*K2 - 672*K1**2*K3**2 - 3940*K1**2 + 1952*K1*K2**3*K3 + 512*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 128*K1*K2**2*K5 + 96*K1*K2*K3**3 - 384*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 7568*K1*K2*K3 + 1008*K1*K3*K4 + 32*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 1576*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 32*K2**3*K6 + 128*K2**2*K3**2*K6 - 2544*K2**2*K3**2 - 328*K2**2*K4**2 + 1248*K2**2*K4 - 112*K2**2*K5**2 - 176*K2**2*K6**2 - 2836*K2**2 - 192*K2*K3**2*K4 + 1408*K2*K3*K5 + 504*K2*K4*K6 + 32*K2*K5*K7 + 48*K2*K6*K8 - 32*K3**4 + 128*K3**2*K6 - 2528*K3**2 - 634*K4**2 - 236*K5**2 - 196*K6**2 - 2*K8**2 + 3882 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.119'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4750', 'vk6.5077', 'vk6.6292', 'vk6.6731', 'vk6.8253', 'vk6.8702', 'vk6.9639', 'vk6.9954', 'vk6.20407', 'vk6.21764', 'vk6.27751', 'vk6.29281', 'vk6.39181', 'vk6.41417', 'vk6.45915', 'vk6.47548', 'vk6.48782', 'vk6.48993', 'vk6.49594', 'vk6.49797', 'vk6.50794', 'vk6.51009', 'vk6.51281', 'vk6.51476', 'vk6.57268', 'vk6.58493', 'vk6.61918', 'vk6.63019', 'vk6.66881', 'vk6.67759', 'vk6.69511', 'vk6.70225'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5O6U3U5U6U1U4U2 |
R3 orbit | {'O1O2O3O4O5O6U3U5U6U1U4U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5O6U5U3U6U1U2U4 |
Gauss code of K* | O1O2O3O4O5O6U4U6U1U5U2U3 |
Gauss code of -K* | O1O2O3O4O5O6U4U5U2U6U1U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 -3 2 0 2],[ 2 0 2 -2 2 0 2],[-1 -2 0 -3 1 0 2],[ 3 2 3 0 3 1 2],[-2 -2 -1 -3 0 -1 1],[ 0 0 0 -1 1 0 1],[-2 -2 -2 -2 -1 -1 0]] |
Primitive based matrix | [[ 0 2 2 1 0 -2 -3],[-2 0 1 -1 -1 -2 -3],[-2 -1 0 -2 -1 -2 -2],[-1 1 2 0 0 -2 -3],[ 0 1 1 0 0 0 -1],[ 2 2 2 2 0 0 -2],[ 3 3 2 3 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,0,2,3,-1,1,1,2,3,2,1,2,2,0,2,3,0,1,2] |
Phi over symmetry | [-3,-2,0,1,2,2,-1,2,1,2,3,2,1,2,2,1,1,1,0,-1,-1] |
Phi of -K | [-3,-2,0,1,2,2,-1,2,1,2,3,2,1,2,2,1,1,1,0,-1,-1] |
Phi of K* | [-2,-2,-1,0,2,3,-1,-1,1,2,3,0,1,2,2,1,1,1,2,2,-1] |
Phi of -K* | [-3,-2,0,1,2,2,2,1,3,2,3,0,2,2,2,0,1,1,2,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+26w^2z+33w |
Inner characteristic polynomial | t^6+47t^4+27t^2 |
Outer characteristic polynomial | t^7+69t^5+82t^3+13t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 2*K1*K2 - 4*K1*K3 - 2*K1 + 3*K2 + K4 + 3 |
2-strand cable arrow polynomial | -256*K1**4*K2**2 + 448*K1**4*K2 - 1216*K1**4 + 1024*K1**3*K2*K3 - 256*K1**3*K3 - 256*K1**2*K2**4 + 576*K1**2*K2**3 - 576*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 5744*K1**2*K2**2 + 160*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 544*K1**2*K2*K4 + 5240*K1**2*K2 - 672*K1**2*K3**2 - 3940*K1**2 + 1952*K1*K2**3*K3 + 512*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 128*K1*K2**2*K5 + 96*K1*K2*K3**3 - 384*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 7568*K1*K2*K3 + 1008*K1*K3*K4 + 32*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 1576*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 32*K2**3*K6 + 128*K2**2*K3**2*K6 - 2544*K2**2*K3**2 - 328*K2**2*K4**2 + 1248*K2**2*K4 - 112*K2**2*K5**2 - 176*K2**2*K6**2 - 2836*K2**2 - 192*K2*K3**2*K4 + 1408*K2*K3*K5 + 504*K2*K4*K6 + 32*K2*K5*K7 + 48*K2*K6*K8 - 32*K3**4 + 128*K3**2*K6 - 2528*K3**2 - 634*K4**2 - 236*K5**2 - 196*K6**2 - 2*K8**2 + 3882 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |