Min(phi) over symmetries of the knot is: [-2,-2,-1,1,2,2,0,-1,1,2,3,0,0,1,2,1,0,0,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1192', '7.24266'] |
Arrow polynomial of the knot is: 8*K1**3 - 4*K1*K2 - 4*K1 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.134', '6.409', '6.424', '6.534', '6.942', '6.969', '6.1192', '6.1280', '6.1310', '6.1325', '6.1858', '6.1925'] |
Outer characteristic polynomial of the knot is: t^7+39t^5+81t^3+19t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1192'] |
2-strand cable arrow polynomial of the knot is: -640*K1**2*K2**4 + 960*K1**2*K2**3 + 512*K1**2*K2**2*K4 - 5344*K1**2*K2**2 - 448*K1**2*K2*K4 + 4096*K1**2*K2 - 256*K1**2*K4**2 - 2128*K1**2 + 960*K1*K2**3*K3 - 896*K1*K2**2*K3 - 448*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 3904*K1*K2*K3 + 496*K1*K3*K4 + 240*K1*K4*K5 - 960*K2**6 + 1696*K2**4*K4 - 4640*K2**4 - 384*K2**3*K6 - 160*K2**2*K3**2 - 720*K2**2*K4**2 + 3560*K2**2*K4 + 32*K2**2 + 128*K2*K3*K5 + 280*K2*K4*K6 - 624*K3**2 - 600*K4**2 - 32*K5**2 - 16*K6**2 + 1750 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1192'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.323', 'vk6.360', 'vk6.365', 'vk6.717', 'vk6.762', 'vk6.771', 'vk6.1455', 'vk6.1512', 'vk6.1519', 'vk6.1957', 'vk6.1994', 'vk6.1999', 'vk6.2458', 'vk6.2660', 'vk6.3000', 'vk6.3124', 'vk6.18393', 'vk6.18396', 'vk6.18731', 'vk6.18736', 'vk6.24852', 'vk6.24857', 'vk6.25311', 'vk6.25320', 'vk6.37052', 'vk6.37057', 'vk6.44207', 'vk6.44210', 'vk6.56167', 'vk6.56170', 'vk6.60701', 'vk6.60704'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2U1U4O5O6U5U6U3 |
R3 orbit | {'O1O2O3O4U2U1U4O5O6U5U6U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U2U5U6O5O6U1U4U3 |
Gauss code of K* | O1O2O3U4U5O4O5O6U2U1U6U3 |
Gauss code of -K* | O1O2O3U2U3O4O5O6U4U1U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 2 2 -1 1],[ 2 0 0 3 2 0 0],[ 2 0 0 2 1 0 0],[-2 -3 -2 0 0 -1 1],[-2 -2 -1 0 0 0 0],[ 1 0 0 1 0 0 1],[-1 0 0 -1 0 -1 0]] |
Primitive based matrix | [[ 0 2 2 1 -1 -2 -2],[-2 0 0 1 -1 -2 -3],[-2 0 0 0 0 -1 -2],[-1 -1 0 0 -1 0 0],[ 1 1 0 1 0 0 0],[ 2 2 1 0 0 0 0],[ 2 3 2 0 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,1,2,2,0,-1,1,2,3,0,0,1,2,1,0,0,0,0,0] |
Phi over symmetry | [-2,-2,-1,1,2,2,0,-1,1,2,3,0,0,1,2,1,0,0,0,0,0] |
Phi of -K | [-2,-2,-1,1,2,2,0,1,3,1,2,1,3,2,3,1,2,3,2,1,0] |
Phi of K* | [-2,-2,-1,1,2,2,0,1,3,2,3,2,2,1,2,1,3,3,1,1,0] |
Phi of -K* | [-2,-2,-1,1,2,2,0,0,0,1,2,0,0,2,3,1,0,1,0,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 3z^2+8z+5 |
Enhanced Jones-Krushkal polynomial | -6w^4z^2+9w^3z^2-16w^3z+24w^2z+5w |
Inner characteristic polynomial | t^6+21t^4+29t^2+1 |
Outer characteristic polynomial | t^7+39t^5+81t^3+19t |
Flat arrow polynomial | 8*K1**3 - 4*K1*K2 - 4*K1 + 1 |
2-strand cable arrow polynomial | -640*K1**2*K2**4 + 960*K1**2*K2**3 + 512*K1**2*K2**2*K4 - 5344*K1**2*K2**2 - 448*K1**2*K2*K4 + 4096*K1**2*K2 - 256*K1**2*K4**2 - 2128*K1**2 + 960*K1*K2**3*K3 - 896*K1*K2**2*K3 - 448*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 3904*K1*K2*K3 + 496*K1*K3*K4 + 240*K1*K4*K5 - 960*K2**6 + 1696*K2**4*K4 - 4640*K2**4 - 384*K2**3*K6 - 160*K2**2*K3**2 - 720*K2**2*K4**2 + 3560*K2**2*K4 + 32*K2**2 + 128*K2*K3*K5 + 280*K2*K4*K6 - 624*K3**2 - 600*K4**2 - 32*K5**2 - 16*K6**2 + 1750 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | True |