Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,1,1,1,1,1,1,2,0,1,1,1,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1193'] |
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878'] |
Outer characteristic polynomial of the knot is: t^7+55t^5+76t^3+12t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1193'] |
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 384*K1**3*K2*K3 - 160*K1**3*K3 + 1600*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 5216*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 512*K1**2*K2*K4 + 4576*K1**2*K2 - 272*K1**2*K3**2 - 3236*K1**2 - 640*K1*K2**4*K3 + 1600*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 1856*K1*K2**2*K3 - 192*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 5104*K1*K2*K3 - 32*K1*K2*K4*K5 + 656*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 544*K2**4*K4 - 2712*K2**4 - 32*K2**3*K6 - 848*K2**2*K3**2 - 208*K2**2*K4**2 + 2152*K2**2*K4 - 1470*K2**2 + 144*K2*K3*K5 + 24*K2*K4*K6 - 1280*K3**2 - 446*K4**2 - 4*K5**2 - 2*K6**2 + 2436 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1193'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11423', 'vk6.11716', 'vk6.12731', 'vk6.13078', 'vk6.20611', 'vk6.22028', 'vk6.28086', 'vk6.29534', 'vk6.31168', 'vk6.31507', 'vk6.32328', 'vk6.32752', 'vk6.39491', 'vk6.41701', 'vk6.46089', 'vk6.47745', 'vk6.52183', 'vk6.52435', 'vk6.53009', 'vk6.53325', 'vk6.57483', 'vk6.58650', 'vk6.62163', 'vk6.63118', 'vk6.63752', 'vk6.63862', 'vk6.64176', 'vk6.64364', 'vk6.67007', 'vk6.67875', 'vk6.69630', 'vk6.70317'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2U1U5O6O5U3U4U6 |
R3 orbit | {'O1O2O3O4U2U1U5O6O5U3U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U1U2O6O5U6U4U3 |
Gauss code of K* | O1O2O3U4U3O5O6O4U2U1U5U6 |
Gauss code of -K* | O1O2O3U4U1O4O5O6U2U3U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 0 2 1 1],[ 2 0 0 2 3 2 2],[ 2 0 0 1 2 2 2],[ 0 -2 -1 0 1 0 1],[-2 -3 -2 -1 0 -2 0],[-1 -2 -2 0 2 0 1],[-1 -2 -2 -1 0 -1 0]] |
Primitive based matrix | [[ 0 2 1 1 0 -2 -2],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -2 -2],[-1 2 1 0 0 -2 -2],[ 0 1 1 0 0 -1 -2],[ 2 2 2 2 1 0 0],[ 2 3 2 2 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,0,2,2,0,2,1,2,3,1,1,2,2,0,2,2,1,2,0] |
Phi over symmetry | [-2,-2,0,1,1,2,0,0,1,1,1,1,1,1,2,0,1,1,1,1,-1] |
Phi of -K | [-2,-2,0,1,1,2,0,0,1,1,1,1,1,1,2,0,1,1,1,1,-1] |
Phi of K* | [-2,-1,-1,0,2,2,-1,1,1,1,2,1,1,1,1,0,1,1,0,1,0] |
Phi of -K* | [-2,-2,0,1,1,2,0,1,2,2,2,2,2,2,3,0,1,1,1,2,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 5z^2+18z+17 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w |
Inner characteristic polynomial | t^6+41t^4+29t^2+1 |
Outer characteristic polynomial | t^7+55t^5+76t^3+12t |
Flat arrow polynomial | 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2 |
2-strand cable arrow polynomial | -144*K1**4 + 384*K1**3*K2*K3 - 160*K1**3*K3 + 1600*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 5216*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 512*K1**2*K2*K4 + 4576*K1**2*K2 - 272*K1**2*K3**2 - 3236*K1**2 - 640*K1*K2**4*K3 + 1600*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 1856*K1*K2**2*K3 - 192*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 5104*K1*K2*K3 - 32*K1*K2*K4*K5 + 656*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 544*K2**4*K4 - 2712*K2**4 - 32*K2**3*K6 - 848*K2**2*K3**2 - 208*K2**2*K4**2 + 2152*K2**2*K4 - 1470*K2**2 + 144*K2*K3*K5 + 24*K2*K4*K6 - 1280*K3**2 - 446*K4**2 - 4*K5**2 - 2*K6**2 + 2436 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}]] |
If K is slice | False |