Gauss code |
O1O2O3O4U2U3U1O5O6U4U5U6 |
R3 orbit |
{'O1O2O3O4U2U3U1O5O6U4U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U1O5O6U4U2U3 |
Gauss code of K* |
O1O2O3U4U5O6O4O5U3U1U2U6 |
Gauss code of -K* |
O1O2O3U1U2O4O5O6U3U5U6U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 0 1 0 2],[ 1 0 -1 1 3 1 1],[ 2 1 0 1 2 1 1],[ 0 -1 -1 0 1 1 1],[-1 -3 -2 -1 0 1 2],[ 0 -1 -1 -1 -1 0 1],[-2 -1 -1 -1 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -2 -1 -1 -1 -1],[-1 2 0 1 -1 -3 -2],[ 0 1 -1 0 -1 -1 -1],[ 0 1 1 1 0 -1 -1],[ 1 1 3 1 1 0 -1],[ 2 1 2 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,2,1,1,1,1,-1,1,3,2,1,1,1,1,1,1] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,1,1,2,3,0,2,-1,1,1,0,1,0,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,0,1,1,1,3,0,0,-1,2,-1,0,1,2,1,-1] |
Phi of K* |
[-2,-1,0,0,1,2,-1,1,1,2,3,0,2,-1,1,1,0,1,0,1,0] |
Phi of -K* |
[-2,-1,0,0,1,2,1,1,1,2,1,1,1,3,1,-1,-1,1,1,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w |
Inner characteristic polynomial |
t^6+29t^4+25t^2+1 |
Outer characteristic polynomial |
t^7+39t^5+83t^3+9t |
Flat arrow polynomial |
12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 512*K1**4*K2 - 1376*K1**4 + 256*K1**3*K2*K3 - 128*K1**3*K3 + 512*K1**2*K2**5 - 2560*K1**2*K2**4 + 5568*K1**2*K2**3 - 11264*K1**2*K2**2 - 512*K1**2*K2*K4 + 8400*K1**2*K2 - 96*K1**2*K3**2 - 4080*K1**2 - 512*K1*K2**4*K3 + 3104*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 2336*K1*K2**2*K3 - 320*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 6512*K1*K2*K3 + 312*K1*K3*K4 + 24*K1*K4*K5 - 864*K2**6 + 1056*K2**4*K4 - 5136*K2**4 - 32*K2**3*K6 - 992*K2**2*K3**2 - 384*K2**2*K4**2 + 3280*K2**2*K4 - 710*K2**2 + 256*K2*K3*K5 + 56*K2*K4*K6 - 1024*K3**2 - 480*K4**2 - 32*K5**2 - 2*K6**2 + 3214 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {1, 4}, {3}]] |
If K is slice |
False |