Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1197

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-2,1,0,3,2,1,1,1,1,0,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1197']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+39t^5+79t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1197']
2-strand cable arrow polynomial of the knot is: -320*K1**4*K2**2 + 480*K1**4*K2 - 2112*K1**4 + 128*K1**3*K2**3*K3 + 864*K1**3*K2*K3 - 448*K1**3*K3 - 448*K1**2*K2**4 + 672*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 5952*K1**2*K2**2 - 1024*K1**2*K2*K4 + 8072*K1**2*K2 - 640*K1**2*K3**2 - 96*K1**2*K4**2 - 5936*K1**2 + 1632*K1*K2**3*K3 + 736*K1*K2**2*K3*K4 - 864*K1*K2**2*K3 - 96*K1*K2**2*K5 + 32*K1*K2*K3**3 - 64*K1*K2*K3*K4 + 7848*K1*K2*K3 - 64*K1*K2*K4*K5 + 1688*K1*K3*K4 + 264*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1336*K2**4 - 1664*K2**2*K3**2 - 400*K2**2*K4**2 + 1368*K2**2*K4 - 3790*K2**2 - 224*K2*K3**2*K4 + 568*K2*K3*K5 + 192*K2*K4*K6 + 24*K3**2*K6 - 2516*K3**2 - 910*K4**2 - 156*K5**2 - 18*K6**2 + 4860
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1197']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4675', 'vk6.4968', 'vk6.6145', 'vk6.6628', 'vk6.8152', 'vk6.8562', 'vk6.9536', 'vk6.9885', 'vk6.20699', 'vk6.22137', 'vk6.28228', 'vk6.29651', 'vk6.39688', 'vk6.41927', 'vk6.46264', 'vk6.47869', 'vk6.48707', 'vk6.48912', 'vk6.49479', 'vk6.49698', 'vk6.50735', 'vk6.50936', 'vk6.51210', 'vk6.51411', 'vk6.57630', 'vk6.58790', 'vk6.62314', 'vk6.63253', 'vk6.67108', 'vk6.67970', 'vk6.69704', 'vk6.70385']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U3U1O5O6U5U4U6
R3 orbit {'O1O2O3O4U2U3U1O5O6U5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U6O5O6U4U2U3
Gauss code of K* O1O2O3U4U5O4O6O5U3U1U2U6
Gauss code of -K* O1O2O3U1U3O4O5O6U2U5U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 0 2 -1 2],[ 1 0 -1 1 3 0 1],[ 2 1 0 1 2 0 1],[ 0 -1 -1 0 1 0 1],[-2 -3 -2 -1 0 0 2],[ 1 0 0 0 0 0 1],[-2 -1 -1 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 2 0 -1 -1 -2],[-2 0 2 -1 0 -3 -2],[-2 -2 0 -1 -1 -1 -1],[ 0 1 1 0 0 -1 -1],[ 1 0 1 0 0 0 0],[ 1 3 1 1 0 0 -1],[ 2 2 1 1 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,1,1,2,-2,1,0,3,2,1,1,1,1,0,1,1,0,0,1]
Phi over symmetry [-2,-2,0,1,1,2,-2,1,0,3,2,1,1,1,1,0,1,1,0,0,1]
Phi of -K [-2,-1,-1,0,2,2,0,1,1,2,3,0,0,0,2,1,3,2,1,1,-2]
Phi of K* [-2,-2,0,1,1,2,-2,1,2,2,3,1,0,3,2,0,1,1,0,0,1]
Phi of -K* [-2,-1,-1,0,2,2,0,1,1,1,2,0,0,1,0,1,1,3,1,1,-2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+25t^4+28t^2
Outer characteristic polynomial t^7+39t^5+79t^3+4t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -320*K1**4*K2**2 + 480*K1**4*K2 - 2112*K1**4 + 128*K1**3*K2**3*K3 + 864*K1**3*K2*K3 - 448*K1**3*K3 - 448*K1**2*K2**4 + 672*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 5952*K1**2*K2**2 - 1024*K1**2*K2*K4 + 8072*K1**2*K2 - 640*K1**2*K3**2 - 96*K1**2*K4**2 - 5936*K1**2 + 1632*K1*K2**3*K3 + 736*K1*K2**2*K3*K4 - 864*K1*K2**2*K3 - 96*K1*K2**2*K5 + 32*K1*K2*K3**3 - 64*K1*K2*K3*K4 + 7848*K1*K2*K3 - 64*K1*K2*K4*K5 + 1688*K1*K3*K4 + 264*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1336*K2**4 - 1664*K2**2*K3**2 - 400*K2**2*K4**2 + 1368*K2**2*K4 - 3790*K2**2 - 224*K2*K3**2*K4 + 568*K2*K3*K5 + 192*K2*K4*K6 + 24*K3**2*K6 - 2516*K3**2 - 910*K4**2 - 156*K5**2 - 18*K6**2 + 4860
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}]]
If K is slice False
Contact