Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1201

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,1,1,0,1,0,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1201']
Arrow polynomial of the knot is: 8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.313', '6.623', '6.1031', '6.1201', '6.1327', '6.1378', '6.1640', '6.1697', '6.1797', '6.1833']
Outer characteristic polynomial of the knot is: t^7+32t^5+36t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.806', '6.1201']
2-strand cable arrow polynomial of the knot is: -32*K1**4 - 192*K1**2*K2**4 + 416*K1**2*K2**3 - 2688*K1**2*K2**2 - 96*K1**2*K2*K4 + 2760*K1**2*K2 - 1908*K1**2 + 448*K1*K2**3*K3 - 448*K1*K2**2*K3 - 96*K1*K2**2*K5 + 2360*K1*K2*K3 + 104*K1*K3*K4 - 64*K2**6 + 128*K2**4*K4 - 792*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 696*K2**2*K4 - 1080*K2**2 + 48*K2*K3*K5 - 500*K3**2 - 142*K4**2 + 1300
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1201']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10513', 'vk6.10517', 'vk6.10586', 'vk6.10594', 'vk6.10773', 'vk6.10781', 'vk6.10888', 'vk6.10892', 'vk6.17680', 'vk6.17682', 'vk6.17729', 'vk6.17731', 'vk6.24290', 'vk6.24292', 'vk6.24761', 'vk6.25220', 'vk6.30198', 'vk6.30202', 'vk6.30273', 'vk6.30281', 'vk6.30400', 'vk6.30408', 'vk6.30654', 'vk6.30746', 'vk6.36516', 'vk6.36951', 'vk6.43620', 'vk6.43622', 'vk6.43724', 'vk6.43726', 'vk6.52736', 'vk6.52846', 'vk6.60348', 'vk6.60350', 'vk6.60620', 'vk6.60953', 'vk6.63458', 'vk6.63462', 'vk6.65417', 'vk6.65755']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U3U5O6O5U4U1U6
R3 orbit {'O1O2O3U1O4U3U5O6O5U2U4U6', 'O1O2O3O4U2U3U5O6O5U4U1U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U5U4U1O6O5U6U2U3
Gauss code of K* O1O2O3U4U3O5O6O4U6U1U2U5
Gauss code of -K* O1O2O3U4U1O4O5O6U3U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 0 1 1 1],[ 1 0 -2 0 2 1 1],[ 2 2 0 1 2 2 1],[ 0 0 -1 0 1 0 1],[-1 -2 -2 -1 0 -1 0],[-1 -1 -2 0 1 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 0 -1 -1 -1],[-1 -1 0 0 -1 -2 -2],[ 0 0 1 1 0 0 -1],[ 1 1 1 2 0 0 -2],[ 2 2 1 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,0,1,1,1,1,2,2,0,1,2]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,1,1,0,1,0,1,0,-1]
Phi of -K [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,1,1,0,1,0,1,0,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,0,1,1,1,1,1,0,1,2,1,1,-1]
Phi of -K* [-2,-1,0,1,1,1,2,1,1,2,2,0,1,1,2,1,0,1,-1,0,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial 5w^3z^2+18w^2z+17w
Inner characteristic polynomial t^6+24t^4+11t^2
Outer characteristic polynomial t^7+32t^5+36t^3+3t
Flat arrow polynomial 8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2
2-strand cable arrow polynomial -32*K1**4 - 192*K1**2*K2**4 + 416*K1**2*K2**3 - 2688*K1**2*K2**2 - 96*K1**2*K2*K4 + 2760*K1**2*K2 - 1908*K1**2 + 448*K1*K2**3*K3 - 448*K1*K2**2*K3 - 96*K1*K2**2*K5 + 2360*K1*K2*K3 + 104*K1*K3*K4 - 64*K2**6 + 128*K2**4*K4 - 792*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 696*K2**2*K4 - 1080*K2**2 + 48*K2*K3*K5 - 500*K3**2 - 142*K4**2 + 1300
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact